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Sheet No.2: Curve Theory

1) Some Proofs:

Prove the following statements:

a) A planar curve is a line i� its curvature vanishes.

b) The center point of the osculating circle is stationary exactly where the
curvature is stationary.

2) Arc Length Parameterization

Consider the following helix:

t : [0, 2π]→ R3, t 7−→ (α cos(t), α sin(t), βt)
T

Compute the arc length parameterization and prove that the normal unit vector
in every curve point crosses the axis of the helix' cylinder.

3) Coordinate Lines

Consider the following helicoid:

X : R \ {0} × R −→ R3

(u, v) 7−→ (u cos v, u sin v, C · v) ;C ∈ R

Determine the surface's coordinate lines. What special kind of curves are they?
Also determine the surface's unit normal.
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4) Planarity of Space Curves

Prove: A space curve is planar i� its torsion vanishes.

5) Fundamental Theorem of Curve Theory

In the lecture, we stated that a curvature and torsion would uniquely determine
a curve up to Euclidian motions. Convince yourself of this fact by coming up
with an example for each of the following types of curve. Then try to draw your
example in di�erently rotated and scaled 3-dimensional Cartesian coordinate
systems.

a) A curve with non-vanishing curvature and vanishing torsion.

b) A curve with non-vanishing curvature and torsion.

6) Parallel Curves

Let X, X̃ be two regular parameterized C3 curves with non-vanishing curvature.
Moreover, for every t ∈ [a, b], let the line connecting X(t) and X̃(t) be parallel
to the principal normal vectors of both curves.
Prove that the distance between X(t) and X̃(t) and the angle between the
tangent vectors of both curves are constant in t.
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