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Foundations from

Analytic Geometry

What is Analytic Geometry?

Analytic Geometry

The main task of analytic geometry is to provide methods and
techniques to solve geometric problems "by calculation". A suitable
tool is the (coordinate independent) notion of a vector.

Prof. Dr. Hans Hagen Geometric Modelling Summer 2018 3



Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

a vector is given by an ordered pair of points (start and end)

two vectors are equal i�. they can be constructed from one
another by a parallel translation → A vector is the class of all
equally directed line segments of identical length

vectors form a group with respect to vector addition

vectors from a vector space with respect to vector addition
and scalar multiplication

This intuitive concept will now be explained formally:
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

De�nition: Vector Space

A set V , on which an addition and a scalar multiplication are
de�ned, is called a Vector Space on the scalar �eld of the real
numbers, if for ~a, ~b, ~c ∈ V , α, β ∈ R:

1 addition:
1 (~a + ~b) + ~c = ~a + (~b + ~c)

2 ~a + ~b = ~b + ~a
3 ∃~0, s.t. ~a +~0 = ~a ∀~a ∈ V
4 ∀~a ∈ V : ∃−~a, s.t. ~a + (−~a) = ~0

2 scalar multiplication:
1 1 · ~a = ~a
2 β (α~a) = (βα) ~a
3 (α + β) ~a = α~a + β~a

4 α(~a + ~b) = α~a + α~b
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

De�nition: Standard Vector Space of Analytic Geometry

Let Rn be the set of all ordered n-tuples of real numbers, i.e.

Rn =

{x1
...
xn

 |xi ∈ R

}

P ∈ Rn is called a point.
An equivalence relation ∼ is introduced on
M := {(P,Q) |P,Q ∈ Rn} as follows:
(P,Q) ∼ (R, S)⇔ Qi − Pi = Si − Ri .
The equivalence classes on M de�ned by ∼ are called vectors.
This construction of equivalence classes introduces independence
from the underlying coordinate system.
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

Applications:

1) parametric representation of a line:
r = ~a + t · ~b

Figure: A line parameterized by a starting point ~a and a direction ~b.

2) 2-point form of a line:
r = ~a + t · (~b − ~a)
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product
Applications:

3) parametric representation of a plane:
p = ~a + t · ~b + τ~c

Figure: A plane parameterized by a starting point ~a and two directions ~b and ~c.

4) 3-point form of a plane:
p = ~a + t · (~b − ~a) + τ · (~c − ~a)
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

The following de�nition introduces the notion of linear
(in-)dependence. This is needed to introduce suitable bases for a
vector space.

De�nition: Linear Dependence

n vectors ~a1, . . . , ~an are called linearly dependent if there are n
numbers α1, . . . , αn ∈ R s.t. at least one of those numbers is not
zero and α1~a1 + . . .+ αn~an = ~0.
If such a set of numbers does not exist, the vectors are called
linearly independent.

Note that a pair of two vectors are linearly dependent i�. they are
parallel.
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

De�nition: Scalar Product

〈·, ·〉 : V × V → R(
~a, ~b
)
7−→ 〈~a, ~b〉 := a1b1 + . . .+ anbn

The scalar product de�nes a norm ‖ · ‖ on a vector space.
It can thus be used to introduce angles and lengths.
Generally, by de�ning d(P,Q) := ‖~p − ~q‖, the scalar product
induces a metric on a vector space.
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

Comments:

1 The scalar product of two vectors is the multiplication of the
length of the one vector times the length of the projection of
the other vector onto the �rst one.

2 By ‖~a‖ := 〈~a, ~a〉1/2, the scalar product de�nes a norm
‖ · ‖ : V → R+ ∪ {0} on vector space V .

3 〈~a, ~b〉 = ‖~a‖ · ‖~b‖ · cos Φ, where Φ := ^(~a, ~b)

4 〈~a, ~b〉 = 0⇔ ~a ⊥ ~b
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

De�nition: Vector resp. Cross Product

[·, ·] : V × V → V ; V = R3

[~a, ~b] 7−→

∣∣∣∣∣∣
~e1 ~e2 ~e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ; {~e1, ~e2, ~e3} standard basis of R3

The vector product is needed to introduce the direction of normals
and to de�ne volumes.
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

Comments:

1 [·, ·] : V × V → V is an antisymmetric ([~a, ~b] = −[~b, ~a]),
bilinear, vector valued map

2 The so-called triple product 〈[~a, ~b], ~c〉 is the (oriented)
volume of the parallelepiped spanned by ~a, ~b, and ~c .
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

Rules:

1 [~a, ~b] = ~0 i�. ~a, ~b linearly dependent

2 [~a, ~b] is orthogonal to ~a and ~b;
{~a, ~b, [~a, ~b]} forms a right-handed system

3 ‖[~a, ~b]‖ = ‖~a‖ · ‖~b‖ · sin Φ =
(
‖~a‖ · ‖~b‖ − 〈~a, ~b〉

)1/2
where Φ := ^(~a, ~b)

4 〈~c , [~a, ~b]〉 = det(~c , ~a, ~b) = |~c , ~a, ~b|
5 〈[~a, ~b], [~c , ~d ]〉 = 〈~a, ~c〉〈~b, ~d〉 − 〈~a, ~d〉〈~b, ~c〉
6 [~a, [~b, ~c]] = 〈~a, ~c〉~b − 〈~a, ~b〉~c
7 [[~a, ~b], [~c , ~d ]] = det(~a, ~b, ~d) · ~c − det(~a, ~b, ~c) · ~d
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Foundations from

Analytic Geometry

Vectors, Scalar Product and Vector Product

Comments:

5) The angle of the normals of two planes can be calculated by
the angles between the vectors spanning the planes (law of
cosines).

6) The vector orthogonal to ~a and to [~b, ~c] lies in a plane spanned
by ~b and ~c . The contributions of ~b and ~c are determined by
the projections of ~a onto ~b and ~a onto ~c , respectively.

7) The normal of a plane spanned by the vector orthogonal to ~a
and ~b and the vector orthogonal to ~c and ~d lies in a plane
spanned by ~c and ~d . The contributions of are determined by
the respective volumes of [~a, ~b] and [~c , ~d ]. (7) follows from (6)
by applying (4).
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

Until now, except for the de�nitions of the products, no coordinate
systems have been involved. After de�ning a suitable basis (i.e.
after the determination of a coordinate system), there is an
unambigous assignment between (position) vectors and tuples of
scalars:

~a =
n∑

i=1

ai ~ei

{~ei}ni=1 orthonormal basis

ai := 〈~a, ~ei 〉
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

"Computing" with column representations of vectors in R3:

vector addition: ~a + ~b =

a1 + b1
a2 + b2
a3 + b3


scalar multiplication: λ~a =

λa1λa2
λa3
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

"Computing" with column representations of vectors in R3:

inner/scalar product: 〈~a, ~b〉 = a1b1 + a2b2 + a3b3

outer/vector product: [~a, ~b] =

∣∣∣∣∣∣
~e1 ~e2 ~e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
triple product: 〈[~a, ~b]~c〉 =

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

Applications:

1) length of vectors

2) angle between vectors

3) orientations

4) Hesse normal form:
Let P1, P2, P3 be three points in a plane (resp. their position
vectors)

HF :=
[(P2 − P1), (P3 − P1)]

‖(P2 − P1), (P3 − P1)‖
−→ 〈(~r − P1),HF 〉 = 0
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

Replacing the "running point" ~r in the plane representation in the
Hesse normal form by the position vector ~a of an arbitrary point,
the distance of this point to the plane is given by |〈(~a− P1),HF 〉|.

Figure: Illustration of the use of the Hesse normal form to determine the distance of a point with
position vector ~a from a plane given by the points P1, P2, and P3.
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

5) distance of a point P to a line given by r = ~a + t~b:

d(r ,P) = ‖[(P−~a),~b]‖
‖~b‖

6) distance of the two skew lines r = ~a1 + t~b1 and s = ~a2 + τ~b2:

d(r , s) = |〈(~a1−~a2),[~b1,~b2]〉|
‖[~b1,~b2]‖

if det(~a1 − ~a2, ~b1, ~b2) 6= 0

Figure: Left: Distance of point P to line r : 1

2
d(r, P)‖~b‖ = 1

2
‖[~p − ~a, ~b]‖. Right: Distance of the two

skew lines r and s: d(r, s) = ‖(~a1 − ~a2)[~b1,~b2 ]
‖, the projection of (~a1 − ~a2) on the normalized vector

normal to r and s.
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

Positions of the respective points of shortest distance:

τ0 =
|~b1, (~a1 − ~a2), [~b1, ~b2]|
〈[~b1, ~b2], [~b1, ~b2]〉

, t0 =
|~b2, (~a1 − ~a2), [~b1, ~b2]|
〈[~b1, ~b2], [~b1, ~b2]〉

These positions can of course be obtained using di�erential calculus
but one can also proceed "geometrically":

d · [~b1, ~b2]

‖[~b1, ~b2]‖
= ~a1 − ~a2 + t0~b1 − τ0~b2
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

Vector multiplication with ~b1 resp. ~b2 yields:

d · [[~b1, ~b2], ~b2]

‖[~b1, ~b2]‖
= [(~a1 − ~a2), ~b2] + t0[~b1, ~b2]

resp.

d · [~b1, [~b1, ~b2]]

‖[~b1, ~b2]‖
= [~b1, (~a1 − ~a2)] + τ0[~b1, ~b2]
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Foundations from

Analytic Geometry

Vectors in Coordinate Systems

A scalar multiplication with [~b1, ~b2]:

0 = 〈[(~a1 − ~a2), ~b2], [~b1, ~b2]〉+ t0〈[~b1, ~b2], [~b1, ~b2]〉

0 = 〈[~b1, (~a1 − ~a2)], [~b1, ~b2]〉+ τ0〈[~b1, ~b2], [~b1, ~b2]〉

From these, the two equations given above for t0 and τ0 follow.
More applications can be found in K. P. Grotemeyer: Analytische
Geometrie, a very good textbook which we widely followed in this
chapter.
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

Vector spaces of higher order are needed to de�ne angles between
subspaces and volumes of subspaces. This leads to an oriented
vector product: The exterior product (or wedge product). The
notion of the exterior product is very important for di�erential
geometry: Applying it to in�nitesimal vectors yields so-called
di�erential forms, a coordinate-free approach to multivariate
calculus. Di�erential forms allow for the coordinate-free integration
on oriented di�erentiable manifolds of arbitrary dimension (curves,
surfaces, volumes, ...).
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

De�nition: Vector Space of Order 2

Let V be an n-dim. vector space and {~e1, . . . , ~en} an orthonormal
basis (ONB) of V . Then,

{~ei ∧ ~ej |i , j = 1, . . . , n and ~ei ∧ ~ej = −~ej ∧ ~ei}

is a basis of the second-order vector space Λ2(V ) of dimension
(n
2

)
.
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

Examples and Special Cases:

1) n = 3:a1
a2
a3

 ∧
b1
b2
b3

 = (a1~e1 + a2~e2 + a3~e3) ∧ (b1~e1 + b2~e2 + b3~e3)

= ~e1 ∧ ~e2 (a1b2 − a2b1)

+ ~e3 ∧ ~e1 (a3b1 − a1b3)

+ ~e2 ∧ ~e3 (a2b3 − a3b2)

where {~e1 ∧ ~e2, ~e3 ∧ ~e1, ~e2 ∧ ~e3} is the basis of the 3-dim.
2nd-order space Λ2(R3).
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

Examples and Special Cases:

2) in general:a1
...
an

 ∧
b1

...
bn

 =

(
n∑

i=1

ai~ei

)
∧

(
n∑

k=1

bk~ek

)

=
∑
i<k

(aibk − akbi ) (~ei ∧ ~ek)

3) the exterior product has a special meaning in E3:
"identify" ~e1 ↔ ~e2 ∧ ~e3; ~e2 ↔ ~e3 ∧ ~e1; ~e3 ↔ ~e1 ∧ ~e2.
this results in: [~a, ~b] = ~a ∧ ~b.
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Foundations from

Analytic Geometry

Higher Order Vector Spaces
Examples and Special Cases:

4) from∑
i<k

(aibk − akbi )
2 =

(
n∑

i=1

(ai )
2

)(
n∑

k=1

(bk)2
)
−

(
n∑

i=1

aibi

)2

it follows that:

‖~a ∧ ~b‖2 = ‖~a‖2‖~b‖2 − 〈~a, ~b〉2

= ‖~a‖2‖~b‖2
(
1− 〈~a, ~b〉2

‖~a‖2‖~b‖2

)
= ‖~a‖2‖~b‖2

(
1− cos2 Φ

)
= ‖~a‖2‖~b‖2 sin2 Φ

where Φ = ^(~a, ~b).
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

This means, ‖~a ∧ ~b‖ = ‖~a‖‖~b‖ sin Φ.
Geometrically, this means that the absolute value of the exterior
product of two vectors is equal to the area of the parallelogram
spanned by ~a and ~b.

De�nition: Vector Space of Order k

Vector spaces Λk(V ) of order k can be de�ned analogously to
2nd-order vector spaces. Λk(V ) has the dimension

(n
k

)
.

{~a1, . . . , ~an} are linearly dependent ⇔ ~a1 ∧ ~a2 ∧ . . . ∧ ~ak = ~0.

A special case is Λn(V ). This vector space is 1-dimensional and one
has: ~a1 ∧ . . . ∧ ~an = det(aij)(~e1 ∧ . . . ∧ ~en).
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

Theorem: "Volume Property of the Determinant"

‖~a1 ∧ ~a2 ∧ . . . ∧ ~ak‖ is the volume of the k-dim. parallelotope
spanned by ~a1, ~a2, ..., ~ak in En (k < n):

‖~a1 ∧ . . . ∧ ~ak‖ =

∣∣∣∣∣∣∣
〈~a1, ~a1〉 . . . 〈~a1, ~ak〉

...
. . .

...
〈~ak , ~a1〉 . . . 〈~ak , ~ak〉

∣∣∣∣∣∣∣
De�nition: "Opening Angle" between two k-dim. Spaces

sin Φ :=
‖~a1 ∧ . . . ∧ ~ak ∧ ~b1 ∧ . . . ∧ ~bk‖
‖~a1 ∧ . . . ∧ ~ak‖ · ‖~b1 ∧ . . . ∧ ~bk‖
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Foundations from

Analytic Geometry

Higher Order Vector Spaces
A line is given by an equivalence class of vectors. A k-dim subspace
is identi�able by an equivalence class of k-vectors as of the
following theorem:

Theorem

a) For all r -dim. subspaces U ⊂ V , there is (except for scalar
multiples) exactly one r -vector ~e1 ∧ . . . ∧ ~er with
~x ∈ U ⇔ ~x ∧ ~e1 ∧ . . . ∧ ~er = ~0

b) Let U1 and U2 subspaces of dimensions r1 resp. r2 and
corresponding r1-vector ~w1 resp. r2-vector ~w2.

U1 ⊂ U2 ⇔ there is (r2 − r1)-vector ~v with ~w2 = ~w1 ∧ ~v
U1 ∩ U2 = ∅ ⇔ ~w1 ∧ ~w2 6= ~0

U1 ∩ U2 = ∅ ⇔ ~w1 ∧ ~w2 is (r1 + r2)-vector regarding U1 + U2
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Foundations from

Analytic Geometry

Higher Order Vector Spaces

The denomination of a p-vector involves more than the de�nition of
a subspace. Two di�erent p-vectors that de�ne the same oriented
p-dim. subspace di�er by a factor which is an invariant of the full
linear (Euclidean) group. This invariant scalar can be used to de�ne
the length of a vector. In general, one obtains the notions of
volume introduced above.
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