Geometric Modelling Summer 2018

Prof. Dr. Hans Hagen

http://hci.uni-kl.de/teaching/geometric-modelling-ss2018

Foundations trom

Foundations from Projective Geometry

Motivating Considerations

(This follows K.P. Grotemeyer: Analytic Geometry.)
Starting with ordinary Cartesian (Euclidean) coordinates $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$ of a point P in $\mathbb{R}^{3}\left(\mathbb{E}^{3}\right)$, we introduce four variables $x_{0}, x_{1}, x_{2}, x_{3}$ by carrying out the following operations:

$$
\bar{x}_{1}=\frac{x_{1}}{x_{0}} ; \quad \bar{x}_{2}=\frac{x_{2}}{x_{0}} ; \quad \bar{x}_{3}=\frac{x_{3}}{x_{0}}
$$

These variables are called homogeneous coordinates.

Motivating Considerations

and vice versa every column vector of this kind with $x_{0} \neq 0$ is a point in Euclidean space, but:

$$
\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { and }\left(\begin{array}{l}
c x_{0} \\
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right) \text { map to the same point if } c \neq 0 .
$$

Projective Geometry

Motivating Considerations

Points with $x=0$ have no Euclidean interpretation. They are points at infinity. $\left(0, a_{1}, a_{2}, a_{3}\right)^{T}$ can be interpreted as the infinitely far point along the line in the direction from the coordinate offspring to the Euclidean point $\left(a_{1}, a_{2}, a_{3}\right)^{T}$.

$$
x_{0} \rightarrow 0 \Rightarrow\left(x_{0}, \frac{a_{1}}{x_{0}}, \frac{a_{2}}{x_{0}}, \frac{a_{3}}{x_{0}}\right)^{T} \rightarrow \infty
$$

Figure: When x_{0} approaches 0 , the length of the direction vector approaches infinity.

Projective Geometry

Motivating Considerations

The equation $x_{0}=0$ describes the plane at infinity, the plane that contains all points at infinity.

Figure: Plane at infinity: $x_{0}=0$.
$\mathbb{E}^{3}+$ plane at infinity $\rightarrow P^{3}$ projective space.
In P^{2}, all lines intersect in one point, which is a point at infinity in case of Euclidean parallelism, or they are identical. In P^{3}, all planes intersect in exactly one line - probably a line at infinity - or they are identical.

Motivating Considerations

Line equation in homogeneous coordinates:

$$
u_{0} x_{0}+u_{1} x_{1}+u_{2} x_{2}=0
$$

Plane equation in homogeneous coordinates:

$$
u_{0} x_{0}+u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0
$$

Motivating Considerations

Principle of Duality: Every 4-column has two geometric interpretations: As a point or as a plane.

Point	Plane
Line \rightarrow connection of two points	
connect	Line \rightarrow intersection of two planes
intersect	
line of points	sheaf of planes

Projective Geometry

Projective Transformations

The principle of duality can only be applied to results where relations between positions are concerned. In projective geometry, there are no notions of metric properties like length, angle, area, or volume!

Definition: Projective Transformations of P^{3}, Collineation, Correlation

Projective Transformation: $F: P^{3} \rightarrow P^{3} ; \tilde{\zeta}=A \zeta ; \operatorname{det} A \neq 0$. Collineation: $\tilde{\zeta}$ and ζ either both represent points or both represent planes.
Correlation: each of $\tilde{\zeta}$ and ζ may represent a point or a plane.

Projective Geometry

Projective Transformations

Definition: Linear Maps and Frames of Reference in Projective Spaces, Projective Coordinates

Let $\left\{\vec{\alpha}_{i}\right\}$ be linearly independent 4-columns in P^{3}, i.e. points or planes in P^{3}.
Figures of 1st order of $P^{3}: \zeta=\mu_{0} \vec{\alpha}_{0}+\mu_{1} \vec{\alpha}_{1}$
Examples: lines of points, sheaf of planes, line as support of a line of points or a sheaf of planes.
Figures of 2 nd order of $P^{3}: \zeta=\mu_{0} \vec{\alpha}_{0}+\mu_{1} \vec{\alpha}_{1}+\mu_{2} \vec{\alpha}_{2}$
Examples: plane as support of points (so-called bundle of planes), points as support of a bundle of planes.
Figures of 3rd order of $P^{3}: \zeta=\mu_{0} \vec{\alpha}_{0}+\mu_{1} \vec{\alpha}_{1}+\mu_{2} \vec{\alpha}_{2}+\mu_{3} \vec{\alpha}_{3}$
Examples: all points of P^{3}, all planes of P^{3}.
$\mu_{0}, \mu_{1}, \mu_{2}$, and μ_{3} are called projective coordinates.

Projective Transformations

Fundamental elements of these figures:

- 1st order: $\binom{1}{0} ;\binom{0}{1}$
- 2nd order: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) ;\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
- 3rd order: $\vec{e}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ; \overrightarrow{e_{1}}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) ; \vec{e}_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) ; \vec{e}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

All the examples mentioned in the definition above (and more figures) can be constructed by linear projective transformations A from these fundamental elements.

Projective Geometry

Projective Transformations

In P^{3}, the fundamental elements form a coordinate tetrahedron.
$\ln P^{2}$, a coordinate triangle results.
The Cartesian (Euclidean) coordinate system features the "zero point" \vec{e}_{0} and \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as points at infinity.

Projective Transformations

Projective Invariants:

- projective transformations map lines to lines
- a linear figure of order r is is mapped to a figure of same order by a projective transformation. The projective coordinates stay the same
- Let $\zeta_{1}, \zeta_{2}, \zeta_{3}$, and ζ_{4} elements of a 1st-order figure and the columns $\binom{\alpha_{0}}{\alpha_{1}},\binom{\beta_{0}}{\beta_{1}},\binom{\gamma_{0}}{\gamma_{1}}$, and $\binom{\delta_{0}}{\delta_{1}}$ the projective coordinates of these figures. The cross ratio $C R\left(\zeta_{0}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ is invariant under projective transformation.

Projective Geometry

Projective Transformations

Definition: Cross Ratio

Let $\zeta_{1}, \zeta_{2}, \zeta_{3}$, and ζ_{4} elements of a 1st-order figure and the columns $\binom{\alpha_{0}}{\alpha_{1}},\binom{\beta_{0}}{\beta_{1}},\binom{\gamma_{0}}{\gamma_{1}}$, and $\binom{\delta_{0}}{\delta_{1}}$ the projective coordinates of these figures. Their cross ratio (also called double ratio) is defined as:

$$
C R\left(\zeta_{0}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\frac{\left|\begin{array}{ll}
\alpha_{0} & \gamma_{0} \\
\alpha_{1} & \gamma_{1}
\end{array}\right|}{\left|\begin{array}{cc}
\beta_{0} & \gamma_{0} \\
\beta_{1} & \gamma_{1}
\end{array}\right|}: \frac{\left|\begin{array}{ll}
\alpha_{0} & \delta_{0} \\
\alpha_{1} & \delta_{1}
\end{array}\right|}{\left|\begin{array}{cc}
\beta_{0} & \delta_{0} \\
\beta_{1} & \delta_{1}
\end{array}\right|}
$$

Projective Geometry

Projective Transformations

Two (isomorphic) models of P^{2} :

Points: antipodal point pairs \leftrightarrow lines through origin
Lines: great circles \leftrightarrow planes through origin

Projective Geometry

Analytical Structure of Projective Geometry

Definition: Projective Spaces

- Let V be a $(n+1)$-dim. vector space over a field F. The set of one-dim. vector spaces $\Pi K:=\{t \cdot \Pi, t \in K, \Pi \in V, \Pi \neq \overrightarrow{0}\}$ is called the projective space of projective dimension n belonging to V. Notation: $P(V)$ with $\operatorname{dim} P(V)=n$.
- If U is a $(k+1)$-dim. subspace of $V, P(U)$ is called the k-dim projective subspace of $P(V)$.
$k=0$: "points"; $k=1$: "lines"; $k=2$: "planes", ...,
$k=n-1$: "hyperplanes"
- A point $P(\vec{r})$ is incident with a projective subspace $P(U)$ iff. the vector subspace \vec{r} is contained in U.
- Points $P\left(\vec{a}_{0}\right), \ldots, P\left(\vec{a}_{n}\right)$ are called linearly independent iff. $\vec{a}_{0}, \ldots, \vec{a}_{n}$ are linearly independent vectors.

Projective Geometry

Analytical Structure of Projective Geometry

Comment:

The projective space $P(V)$ is spanned by $n+1$ linearly independent vectors but while in V after picking a base every vector can be associated with a unique ($n+1$)-tuple $\left(\lambda_{0}, \ldots, \lambda_{n}\right)$, this is not possible in $P(V)$!
An additional norming point is needed to uniquely determine the base vectors up to a common factor $p \in K \backslash\{0\}$.

Projective Geometry

Analytical Structure of Projective Geometry

Definition: Projective Coordinate Systems

Every $(n+2)$-tuple of points of the projective space $P(V)$ having the property that $n+1$ points are always linearly independent, is called a projective coordinate system of $P(V)$.

Theorem

Every projective coordinate system of $P(V)$ can be represented in the form $\left\{P\left(\vec{a}_{0}\right), P\left(\vec{a}_{1}\right), \ldots, P\left(\vec{a}_{n}\right), P\left(\vec{a}_{0}+\vec{a}_{1}+\ldots+\vec{a}_{n}\right)\right\}$, where $\vec{a}_{0}, \ldots \vec{a}_{n}$ are a basis of V.

Projective Geometry

Analytical Structure of Projective Geometry

Projective Plane

coordinate triple

Projective space

coordinate quadruplet

Projective Geometry

Analytical Structure of Projective Geometry

Comments:

A k-dim. projective subspace $P(U)$ can thus be characterized by
$k+1$ linearly independent points $P\left(\vec{a}_{0}\right), \ldots, P\left(\vec{a}_{k}\right)$, but also by
$n-k$ linear functions $L_{1}, \ldots L_{n-k}$ over
$V: P(U)=\left\{P(\vec{r}) \in P: L_{1}(\vec{r})=\ldots=L_{n-k}(\vec{r})=0\right\}$.
To every k-dim. subspace of $P(V)$ belongs a $(n-k-1)$-dim. subspace of $P(L(V, K))$. In particular, every hyperplane in $P(V)$ corresponds to a point in $P(L(V, K))$ and every point in $P(V)$ to a hyperplane in $P(L(V, K))$.

Projective Geometry

Analytical Structure of Projective Geometry

Definition: Dual Vector Spaces

Let V and V^{*} be vector spaces over a common scalar field F with $\operatorname{dim} V=\operatorname{dim} V^{*}=n+1$.
V and V^{*} are called dual vector spaces iff. there is a bilinear map $\langle\cdot, \cdot\rangle: V^{*} \times V \rightarrow K$ which does not degenerate, i.e.

$$
\begin{aligned}
\langle\Pi, x\rangle=0 \forall \Pi \in V^{*} & \Rightarrow x=0 \\
\langle\Pi, x\rangle=0 \forall x \in V & \Rightarrow \Pi=0
\end{aligned}
$$

Projective Geometry

Analytical Structure of Projective Geometry

Examples:

(1) Let V the Euclidean vector space, $\langle\cdot, \cdot\rangle$ the scalar product. $\rightarrow(V, V)$ is a pair of dual vector spaces.
(2) Let V the Euclidean vector space, $V^{*}:=L(V, K) ;\langle f, x\rangle: f(x)$.
$\rightarrow(V, L(V, K))$ is a pair of dual vector spaces.
(3) Let $V=K^{n+1}, V^{*}=K^{n+1} ; ~ \Pi=\left(\Pi_{0}, \ldots \Pi_{n}\right)$,
$x=\left(x_{0}, \ldots, x_{n}\right),\langle\Pi, x\rangle=\operatorname{sum}_{i, j=0}^{n} c_{i j} \Pi_{i} x_{i}$.
\rightarrow If $\operatorname{det}\left(c_{i j}\right) \neq 0,\left(V, V^{*}\right)$ is a pair of dual vector spaces.

Projective Geometry

Analytical Structure of Projective Geometry

Definition: Projective Coordinate Systems

Let $\left(V, V^{*}\right)$ be a pair of dual vector spaces. Then, $P\left(V^{*}\right)$ is called dual to $P(V)$.

Theorem

A point $P(\vec{r})$ is incident with $P(U)$ and $P(V)$ iff. $\langle\Pi, \vec{r}\rangle=0$ for all $\Pi \in U^{+}=\left\{\Pi \in V^{*}:\langle\Pi, \vec{a}\rangle=0 \forall \vec{a} \in V\right\}$.

Theorem: Duality Principle

If one takes a theorem holding in $P(V)$ and replaces every occurence of "connection" by "intersection", "intersection" by "connection", and " k-dim. subspace" by "($n-k-1$)-dim subspace, one obtains a new "dual theorem" that holds in $P(V)$.

Projective Geometry

Analytical Structure of Projective Geometry

> Definition: Automorphism
> Let V a vector space with $\operatorname{dim} V=n+1$. Every invertible linear $\operatorname{map} A: V \rightarrow V$ is called automorphism of V. The set of all automorphisms of V constitute a group called $G L(V)$ resp. $G L(n+1, K)$.
> After picking a base for V, every automorphism A of V bijectively associated with a quadratic matrix with non-zero determinant.

Projective Geometry

Analytical Structure of Projective Geometry

Definition: Group of Projective Transformations

If $A \in G L(n+1, K)$, the map $\alpha: P(V) \rightarrow P(V)$ induced by A on $P(V)$ is called a projective transformation. The automorphisms A and A^{\prime} of V induce the same map α on $P(V)$ if $A=c \cdot A^{\prime}$ for some $c \neq 0$.
The set of all homothetic transformations $H_{n+1}:=\{c \cdot I d \mid c \neq 0\}$ is a normal subgroup (dt. "Normalteiler") of $G L(n+1, K)$. The quotient group (dt. "Faktorgruppe")

$$
\mathbb{P}:=P \cdot G L(n+1, K):=G L(n+1, K) / H_{n+1}
$$

is the group of the projective transformations of $P(V)$.
The next chapter will discuss further detail on the group theoretical aspects within the scope of Felix Klein's Erlanger Programm.

Computer Graphics and HCI Group

Analytical Structure of Projective Geometry

Properties of Projective Transformations:

- bijective
- preserve the cross ratio
- map projective subspaces to projective subspaces of equal dimension

Computer Graphics and HCI Group

Analytical Structure of Projective Geometry

Properties of Projective Transformations:

- bijective
- preserve the cross ratio
- map projective subspaces to projective subspaces of equal dimension

Projective Geometry

Analytical Structure of Projective Geometry

Comments:

- Every line-preserving bijective map that preserves the cross ratio from $P(V)$ to itself is a projective transformation.
- The subject of projective geometry is to investigate properties of configurations and figures that are invariant under projective transformations.
- Every line-preserving bijective map of a real projective space whose dimension is at least two is a projective transformation.

