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In this chapter, we brie�y introduce some fundamental concepts

from multivariate calculus. These concepts are important for

geometry in general and di�erential geometry in particular.

We start with di�erential calculus:
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Multivariate Di�erential Calculus

De�nition: Partial Derivative

Let M ⊂ Rn open; F : M → R
The partial derivative at point a = (a1, a2, . . . , an) ∈ M with

respect to the i-th variable ai is de�ned as:

∂

∂xi
F (a) = lim

h⇒0

F (a1, . . . , ai + h, . . . , an)− F (a1, . . . , ai , . . . , an)

h

Interpreting this as the directional derivative in direction ~ei , we can

de�ne the directional derivative in direction ~a as:

lim
t→0

F (t0 + t~a)− F (x0)

t
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Further, we de�ne the Nabla operator in Rn as: ∇ =
∑n

i=1 ~ei
∂
∂i ,

where ~ei is the unit vector in i-direction.

Thus, if F : M ⊂ Rn → R, we can de�ne the gradient of F as:

gradF = ∇F =
(

∂
∂x1

F , . . . , ∂
∂xn

F
)
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Clairot's Theorem (dt. meist: Satz von Schwarz):

Let M ⊂ Rn open; F : M → R; F at least k times di�erentiable

and all k-th derivatives continuous in M. Then, the order of the

sequence of derivations in all j-th derivatives with j ≤ k is

irrelevant.

Especially for the second derivative, we get:

∂

∂x

(
∂

∂y
F

)
=

∂

∂y

(
∂

∂x
F

)
In this course, we will also use di�erent notations, like:

∂2F

∂x∂y
(x , y) =

∂2F

∂y∂x
(x , y) or Fxy = Fyx
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Now, we de�ne the notion of di�erentiability for mulvariate real

functions mapping to arbitrary real spaces:

De�nition: Di�erentiable Function

Let M ⊂ Rn open; F : M → Rm; x0 ∈ M.

F is called di�erentiable in a point a ∈ M, i�. there exists a linear

map

dFa : Rn → Rm s.t. lim
‖h‖→0

F (a+ h)− F (a)− dFa(h)

‖h‖
= 0

Note that h is a vector!
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A function F is di�erentiable i�. there is a map dFa as de�ned

above. dFa is a unique map and called the di�erential of F in a.
With respect to the standard bases Rn and Rm, it is given by the

Jacobian matrix:

De�nition: Jacobian Matrix

Let F : Rn → Rm and ∂F
∂xi

be de�ned for all i = 0, . . . , n. Then, the
Jacobian Matrix of F at point a is de�ned as:

JF (a) = J

 f1
...

fm

 :=


∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) . . . ∂fm
∂xn

(a)


If F di�erentiable, dFa = JF (a).
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Remarks:

The Jacobian of a scalar-valued univariate function is the

derivative.

The Jacobian of a scalar-valued multivariate function is the

gradient.

Intuitively, the Jacobian describes the local �amount of

transforming� that is imposed by a transformation.

If a function is di�erentiable, its di�erential is given by the

Jacobian. The converse is in general not true!

The Jacobian only requires the partial derivatives of a function

to exist. Thus, in general, the Jacobian can be de�ned for a

function that is not di�erentiable.

Prof. Dr. Hans Hagen Geometric Modelling Summer 2018 9



Foundations from

Vector Calculus

Multivariate Di�erential Calculus

Remarks:

If F : M → Rm has continuous partial derivatives, dFa is

de�ned.

If m = 1, the gradient of F points to the direction of the

greatest increment and its length is equal to the greatest

increment.

Generalization of the chain rule: d(g ◦ f )|a = dg |f (a) · df |a
In coordinates: J(g ◦ f )|a = J (g (f (a))) · Jf (a)

Example:

x (u(t), v(t),w(t)) −→ ∂x

∂t
= xu · u̇ + xv · v̇ + xw · ẇ
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Implicit Function Theorem

Let M ⊂ Rn open; (x0, y0) ∈ M; F : M → Rk a Cr -continuous map

with F (x0, y0) = 0 and the di�erential of y 7→ F (x0, y0) be regular

in y0.
Then, there exists a subspace V ⊂ R(n − k) and a Cr -continuous
map G : V → Rk where G (x0) = y0 and F (x ,G (x)) = 0 for all

x ∈ V .
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The following is a useful corollary that can be derived from the

implicit function theorem:

Inverse Function Theorem

Let the di�erential of a function F : U → V , where U,V ⊂ Rn, be

regular, i.e. F is di�erentiable and det JF 6= 0 (and thereby JF
invertible).

Then, there exists a local inverse map (F |u)
−1 : V → M; M ⊆ U.
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De�nition: Line Integral (Curve Integral, Contour Integral)

Let V : M → Rn a continuouos vector �eld and K a piecewise

smooth oriented curve in Rn with parameterization F : [a, b]→ Rn.

The number ∫
K
〈V , dF 〉 :=

∫ b

a
〈V (F (t)) ,F ′(t)〉dt

is independent from the parameterization and is called the line

integral (also: curve integral or contour integral) of V along K .
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Substitution Rule:

Let K ⊂ Rn compact; f integrable on K .

By g : Rn → Rn, �new coordinates� are introduced:∫
K
f (~x)d~x =

∫
g−1(K)

f
(
g(~̃x) det(g ′)

)
det(g ′) is some kind of �distortion factor�.
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Example Coordinate Systems:

Polar Coordinates in the Plane:

g :
x = r cosϕ
y = r sinϕ

with domain:

D(g) = {(r , ϕ)|r ∈ [0,∞);ϕ ∈ [0, 2π]}
Spherical Coordinates in Space:

g :
x = r cosϕ cos θ
y = r sinϕ sin θ
z = r sin θ

with domain:

D(g) = {(r , ϕ, θ)|r ∈ [0,∞);ϕ ∈ [0, 2π]; θ ∈ [−π
2 ,

π
2 ]}

Cylindrical Coordinates in Space:

g :
x = r cosϕ
y = r sinϕ
z = z̃

with domain:

D(g) = {(r , ϕ, z̃)|r ∈ [0,∞);ϕ ∈ [0, 2π]; z̃ ∈ (−∞,∞)}
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Examples:

1)
∫
K

√
x2 + y2d(x , y) where K := {(x , y)|1 ≤ x2 + y2 ≤ 4}:

new coordinates: polar coordinates in plane:
x = r cosϕ
y = r sinϕ

g−1K = {(r , ϕ)|1 ≤ r ≤ 2; 0 ≤ ϕ ≤ 2π}∫
K

√
x2 + y2d(x , y) =

∫
g−1(K)

r det(g ′)dx̃

=

∫
g−1(K)

r2d(r , ϕ) =

∫ 2π

0

∫ 2

1
r2drdϕ

=
14

3
π
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Examples:

2) Volume of the Sphere Octant:

V =
∫
K d(x , y , z) where

K = {(x , y , z)|x ≥ 0; y ≥ 0; x2 + y2 + z2 ≥ 1}

new coordinates: spherical coordinates:

x = r cosϕ cos θ
y = r sinϕ sin θ
z = r sin θ

g−1(K ) = {(r , ϕ, θ)|0 ≤ r ≤ 1; 0 ≤ ϕ ≤ π
2 ; 0 ≤ θ ≤

π
2 }

det(g ′) = r2 cos θ

v =

∫∫∫
K
d(x , y , z) =

∫∫∫
g−1(K)

r2 cos θdϕdθdr

=

∫ 1

0

∫ π
2

0

∫ π
2

0
r2 cos θdϕdθdr =

π

6
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Applications: Centroids:x1y0
z0

 =
1

V
·

∫∫∫ x d(x , y , z)∫∫∫
y d(x , y , z)∫∫∫
z d(x , y , z)

 ; V :=

∫∫∫
d(x , y , z)
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Applications: Centroids:

Example: Centrois of the sphere octant:

x0 =
6

π

∫∫∫
K
x d(x , y , z) =

6

π

∫∫∫
g−1(K)

r3 cosϕ cos2 θ drdϕdθ

=
6

π

∫ 1

0

∫ π
2

0

∫ π
2

0
r3 cosϕ cos2 θ drdϕdθ

=
3

8

Analoguously, one gets y0 =
3
8 and z0 =

3
8 .
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Applications: Moments of Inertia:

Moments of inertia of a volume V with respect to the x-axis (Ix),
y -axis (Iy ), and z-axis (Iz):

Ix :=

∫∫∫
V
(y2 + z2) d(x , y , z)

Iy :=

∫∫∫
V
(x2 + z2) d(x , y , z)

Iz :=

∫∫∫
V
(x2 + y2) d(x , y , z)
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Applications: Moments of Inertia: Example: Moment of inertia

of a cuboid:

V ={(x , y , z)|x ∈ [− a
2 ,

a
2 ], y ∈ [−b

2 ,
b
2 ], z ∈ [− c

2 ,
c
2 ]}

Ix =

∫∫∫
V
(y2 + z2) d(x , y , z)

=

∫ a
2

− a
2

∫ b
2

−b
2

∫ c
2

− c
2

(y2 + z2) dxdydz

=
a · b · c
12

(b2 + c2)

Iy and Iz can be computed analogously.
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Important Vector Fields: remember: ∇ = ~e1

∂
∂x1

+ ~e2
∂

∂x2
+ · · · + ~en

∂
∂xn

gradf (x) = ∇f :=
(
∂f
∂x1
, ∂f∂x2 , . . . ,

∂f
∂xn

)
,

where f : Rn → R; f ∈ C1
divv(x) = 〈∇, v〉 := ∂V1

∂x1
(x) + ∂V2

∂x2
(x) + · · ·+ ∂Vn

∂xn
(x),

where v : Rn → T ⊆ Rn; v ∈ C1

curlv(x) = [∇, v ] :=
(
∂V3
∂x2
− ∂V2

∂x3
, ∂V1
∂x3
− ∂V3

∂x1
, ∂V2
∂x1
− ∂V1

∂x2

)
,

where v : R3 → T ⊆ R3; v ∈ C1

Figure: Gradient, Divergence, and Curl. Images taken from Wikipedia.
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De�nition: Surface Integrals

Let X (u) be a surface. The area of the surface is de�ned as:∫∫
X (u)

dF :=

∫∫
u
‖[ ∂X∂u1 (u1, u2),

∂X
∂u2

(u1, u2)]‖ d(u1, u2)

=

∫∫
u

√
g du1du2

If G : u → R , the surface integral of G over X (u) is de�ned as:∫∫
X (u)

G dF :=

∫∫
u
G (u1, u2) ·

√
g du1du2

Often, one has G (u, v) = 〈F ◦ X ,N〉, where F : R3 → R3 and N is

the surface normal.
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De�nition: Flux of a Vector Field

The �ux of a vector �eld A : R3 → T ⊆ R3 through a surface

X (u) with surface normal N is de�ned as:∫∫
X (u)
〈A ◦ X ,N〉 dF =

∫∫
u
〈A ◦ X ,N〉‖[X1,X2]‖ d(u, v)

=

∫∫
u
〈A ◦ X ,N · ‖[X1,X2]‖〉 d(u, v)

=

∫∫
u
〈A ◦ X , [X1,X2]〉 d(u, v)
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Remarks:

The �ux can be used to model transport: For example, the energy

�ux measures the rate of energy that passes an oriented unit area

(e.g. heat �ux, radiation �ux). Another example is the particle �ux,

the number of particles per second that pass a unit area.

Figure: Red Arrows: Flow of particles, charges, etc. Black circles: Surface boundaries. The �ux is
the number of arrows passing each ring. Text and images taken from Wikipedia.
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Green's Theorem

Let V a vector �eld on D ⊂ R2, V be some region ⊂ D, and ∂V
the piecewise smooth boundary curve of V . Furthermore, let v1, v2
continuous functions V → R. Then:∫∫

V

(
∂v1
∂x2
− ∂v2
∂x1

)
d(x , y) =−

∫
∂V

(v1dx1 + v2dx2)

=−
∫
∂V
〈~v , d~x〉
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Divergence Theorem (Gauss' Theorem)

Let V be a vector �eld over D ⊂ R3, V some region ⊂ V, v a

continuous di�erentiable vector �eld over an open set U with

V ⊆ U. Furthermore, let ∂V the outer surface of V in R3 and N
the outside normal of said surface. Then:∫∫∫

V
divv d(x , y , z) =

∫∫
∂V
〈v ,N〉dS

Statement: �The �ux of v through the surface ∂V of V is equal to

the integral of the source density over V.�∫
∂V is the surface integral formed with the outer surface element

dS on ∂V .
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Integral Theorems
Remarks:

Figure: Upper: Closed region in space. Lower: Examples for surfaces, where the Divergence Theorem
is applicable (left) and where it is not (right). Boundaries in red. Images taken from Wikipedia.
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Stokes' Theorem

Let V be a vector �eld over D ⊂ R3, v be a continuous

di�erentiable vector �eld, X a surface in R3 with piecewise smooth

boundary with surface normal N. Then:∫∫∫
X (u)
〈(curlv) ◦ X ,N〉dF =

∫
∂X (u)

v1dx1 + v2dx2 + v3dx3

=

∫
∂X (u)

〈v , d~x〉

Statement: �The circulation of the C2-�eld v along ∂X (u) is equal
to the �ux of curlv through X (u).�
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Coordinate-Free Representation of grad, div, and curl

Let V a region of space with volume V and f a function continuous

around p ∈ V. The following function is sometimes called a

�volume integral�:

f (p) = lim
V→0

1

V

∫
V
f (x)dx

Using this equation and certain special cases of the divergence

theorem, we can derive coordinate-free representation of the

gradient, the divergence, and the curl:
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Coordinate-Free Representation of grad, div, and curl
Let V a spatial region of volume V , ∂V the boundary surface of V.

The gradient of the scalar �eld f in a point p ∈ V is given by

gradf (p) = lim
V→0

1

V

∫
∂V

f d ~S

The divergence of a vector �eld v in a point p ∈ V is given by

divv(p) = lim
V→0

1

V

∫
∂V

v d ~S

The curl of a vector �eld v in a point p ∈ V is given by

curlv(p) = lim
V→0

1

V

∫
∂V

[d ~S , v ]∫
∂V is the surface integral formed with the outer surface element

dS on ∂V.
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