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Di�erential Geometry

Surface Theory

Surface De�nition

De�nition (Parametrized Surface)

(a) A parametrized surface of class Cr (r ≥ 1) is a map

X : U → Rn that has rank 2 everywhere (i. e. X1,X2 are

linearly independent; Xi := ∂X
∂Ui

).

(b) An (oriented) surface is an equivalence class of parametrized

surfaces. Inside a surface, a di�eomorphism τ : Ū → U of

class Cr with a Jacobian that is positive everywhere is called a

parameter transformation of class Cr .
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Di�erential Geometry

Surface Theory

De�nition: Tangent Space, Normal Vector

De�nition (Tangent Space � Normal Vector � Frame of
Reference)

a) The linear subspace of Rn spanned by X1,X2 is called tangent

space of X .

b) N := [X1,X2]
‖∼‖ is called normal unit vector and {X1,X2,N} form

a (non-orthonormal) moving frame of reference called Gauss

frame.
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Di�erential Geometry

Surface Theory

Surface Metric
As a motivation, consider a surface curve

y : [a, b]→ U ⊂ R2

planar curve 7→ X : U → E3

surface 7→ surface curve X̃ (t) = X ◦ Y (t) : [a, b]→ E3

Calculating the length of a surface curve

L =

∫ b

a
‖ ˙̃X‖dt =

∫ b

a

〈
2∑

r=1

Xr · U̇r ,
2∑

s=1

Xs · U̇s

〉 1
2

dt

=

∫ b

a

〈X1,X1〉︸ ︷︷ ︸
g11

U̇1U̇1 + 2 〈X1,X2〉︸ ︷︷ ︸
g12

U̇1U̇2 + 〈X2,X2〉︸ ︷︷ ︸
g22

U̇2U̇2


1
2

dt

leads to the de�nition on the next slide. . .
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Di�erential Geometry

Surface Theory

First Fundamental Form

De�nition (First Fundamental Form)

The map I assigning for each u ∈ U the restriction of the scalar

product 〈·, ·〉 : Rn × Rn → Rn to the tangent space in U is called

�rst fundamental form of the parametrized surface.

Gij := 〈Xi ,Xj〉 are the coordinates of I with respect to the

canonical basis X1,X2 in tangent space.
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Di�erential Geometry

Surface Theory

First Fundamental Form Remarks

1) The tangent space is invariant under parameter

transformations.

2) The �rst fundamental form is invariant under Euclidean

motion and parameter transformation; the matrix of the �rst

fundamental form w. r. t. the canonical basis is symmetric and

positive de�nite.
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Di�erential Geometry

Surface Theory

First Fundamental Form Remarks

Knowing the �rst fundamental form we can determine:

Length of surface curves:

L =
∫ b
a ‖X̃

′(t)‖dt =
∫ b
a

√
grsU̇ r U̇sdt

(we changed the notation and sum over all indices that are

written as sub- and superscripts)

Angle between two surface curves: cos r =
〈
X̃ ′(t0)
‖∼‖ ,

X̄ ′(t1)
‖∼‖

〉
surface area: A =

∫∫
U

g
1
2 du1du2; wherein g := g11g22 − g2

12
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Di�erential Geometry

Surface Theory

Second Fundamental Form

De�nition (Second Fundamental Form)

The linear map LU : TUX → TUX with LU := −dNU ◦ X−1U is

called shape operator (dt.Weingartenabbildung). The bilinear

form IIU de�ned by

IIU(A,B) = 〈LU(A),B〉 ∀A,B ∈ TUX

is called second fundamental form of X in U. The map U 7→ IIU

is called second fundamental form of the surface.
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Di�erential Geometry

Surface Theory

Second Fundamental Form - Graphical Description

Derivations of Xu in u-direction, Xw in w -direction, Xu in

w -direction and Xw in u-direction lead to the vectors Xuu, Xww ,

Xuw and Xwu. These can be projected to the normal N. The

resulting functions h11, h22, h12 and h21 provide information about

the curvature of the surface.
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Di�erential Geometry

Surface Theory

Second Fundamental Form

Theorem
1 The shape operator is self-adjoint w. r. t. the �rst fundamental

form.

2 The second fundamental form is symmetric.

3 The matrix {hij}2i=1 of the second fundamental form is given

by:

hij = −〈Xi ,Nj〉 = + 〈Xij ,N〉 .

4 Matrix of the shape operator:
(
hij

)
= hjkg

ki .
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Di�erential Geometry

Surface Theory

Second Fundamental Form

Weingarten Equations
(dt.Weingart'sche Ableitungsgleichungen)

Ni = −hri Xr

(Note that the partial derivative in u and in w direction of the

normal vector lies in tangent space.)

Prof. Dr. Hans Hagen Geometric Modelling Summer 2018 13



Di�erential Geometry

Surface Theory

Second Fundamental Form Remarks

1) The second fundamental form is invariant under direct

Euclidean motion and orientation-preserving parameter

transformations.

2) As L is a self-adjoint map, it has two real eigenvalues k1 and

k2 which are called principal curvature. The corresponding

eigenvectors are orthogonal and are called principal curvature

vectors.
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Di�erential Geometry

Surface Theory
Algebraic facts in geometric meaning:

Look at the plane spanned by N and the direction of any tangent

vector in a certain point on the surface and intersect the plane with

said surface. The local sectional curve obtained lies on the surface

and is a 2-dimensional curve in the intersecting normal plane. This

is guaranteed by the existance of a normal vector in every point on

the surface. Now rotate the tangents around N. The result is a

one-parametric set of section curves (normal-section-curves). All of

these planar curves are surface curves with a well-de�ned curvature

(normal-section.curvature). The maximum and minimum values of

these curvatures are exactly the eigenvalues of the Shape Operator.
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Di�erential Geometry

Surface Theory

Gaussian Curvature and Mean Curvature

From the two principle curvatures, derive more curvature concepts:

De�nition (Gaussian Curvature and Mean Curvature)

1 Gaussian curvature: K = k1 · k2 = det(L) = det II

det I

2 Mean curvature: H = 1
2 trace(L) = 1

2(k1 + k2)

Now, studying curves on surfaces provides insight into the

geometric meaning of the fundamental forms.
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Di�erential Geometry

Surface Theory

Geometric Interpretation of K

X : U → E3 par. surface

N : U → S2 ⊂ E3 spherical map

F ∗: surface area of �normal surface�

F ∗ =

∫∫
U

|N1,N2,N|du1du2 =

∫∫
U

|k |g
1
2 du1du2 =

∫∫
F

|k |dF

Now, we consider a sequence of neighborhoods of U contracting on

U:

lim

∫∫
Un

|k |dF∫∫
Un

dF
= |K (U)|

The gaussian curvature can be used to classify surfaces. This is

described further down in detail.
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Di�erential Geometry

Surface Theory

Curvature of Surface Curves

Let Y (s) be an arc length parameterized surface curve

Y ′′ = k · e2 = kn · N + kgS; wherein S ∈ TUX

Y ′′ points into the direction of the Frenet-Frame's principal normal

e2 while the surface curve still has a normal and a tangential

component w. r. t. the surface. The normal component kn is the

normal curvature (outer geometry), the tangential component kg is

the geodesic curvature (inner geometry).

In the general case, e2 (curves) and N (surface) embrace an angle

ϕ that changes for each point. This angle depends on the curve

and the surface:

cosϕ = 〈e2,N〉 → k︸︷︷︸
curve

· cosϕ = 〈k · e2,N〉 =
〈
Y ′′,N

〉
= kn︸︷︷︸

surface
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Di�erential Geometry

Surface Theory

Curvature of Surface Curves

Theorem (Normal Section Curvature � Meusnier � Euler)

1 All surface curves through X (U) with the same tangent in this

point have the same normal curvature kn in U. The normal

curvature is given by

kn =
hijλ

iλj

gijλiλj
; λiXi tangent vector.

2 For ϕ the angle between the curve principal normal vector e2
and the surface normal vector N the curvature k , kn
respectively, is given by

kn = k · cosϕ Meusnier's Theorem
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Di�erential Geometry

Surface Theory

Curvature of Surface Curves

Theorem � cont'd

3 For A = λiXi 6= 0 let X(λ1, λ2) be the curvature of the

(appropriately parameterized) sectional curve of X (u,w) with

the plane through X (u,w) spanned by A and N. It is called

normal section curvature of the surface in X (u,w) in

direction A. One has:

X(λ1, λ2) =
hijλ

iλj

gijλiλj

.
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Di�erential Geometry

Surface Theory

Curvature of Surface Curves

Theorem � cont'd

Y (s) is called normal section curve with Y ′(s0) = A and

e2(s0) = ±N; the curve's existence (and hence the existence of the

normal section curvature) is a result of the theorem on implicitly

de�ned functions.
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Di�erential Geometry

Surface Theory

Curvature of Surface Curves

Theorem � cont'd
4 If the curvature X is constant, IIU = k · IU and X (u0,w0) is

called umbilical point (dt. Nabelpunkt). Otherwise, the

curvature has exactly two critical values, k1 and k2, i. e.
exactly the principal curvatures. The corresponding unit

vectors A1 and A2 are principal curvature vectors. They are

orthogonal. If A = λiXi = cosϕA1 + sinϕA2, one has:

X(λ1, λ2) = k1 cos2 ϕ+ k2 sin2 ϕ Euler's Theorem.
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Di�erential Geometry

Surface Theory

Motivation for the Conception of Mean Curvature

Mean Curvature

The mean curvature is closely related to te concept of minimal

surfaces.

H =
1

2π

∫ 2π

0
X(ϕ)dϕ = k1

1

2π

∫ 2π

0
cos2 ϕdϕ+ k2

1

2π

∫ 2π

0
sin2 ϕdϕ

=
1

2
(k1 + k2)
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Di�erential Geometry

Surface Theory

Motivation for the Conception of Mean Curvature

The fact that maximal and minimal curvature de�ne orthogonal

tangent directions allows curvature-line networks.

De�nition (Line of Curvature)

A surface curve for which in every point the tangent vector equals

the principal curvature vector is called line of curvature.
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Di�erential Geometry

Surface Theory

Representation of the Surface

Local Representation of the Surface

X : U → E3 param. surface; f (η1, η2) distance of the point

X (u10 + η1, u20 + η2) to the

tangential plane
X (u10 + η1, u20 + η2)

= X (u10 , u
2
0) + Xi (u

1
0 , u

2
0)ηi +

1

2
Xij(u

1
0 , u

2
0)ηiηj +O(‖η‖2)

F (η1, η2) = 〈X (u0 + η)− X (u0),N(u0)〉 =
1

2
hij(u0)ηiηj +O(‖η‖2)
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Di�erential Geometry

Surface Theory

De�nition (Osculating Paraboloid)

P(η1, η2) = X (u0) + Xi (u0)ηi + (
1

2
hij(u0)ηiηj)N(u0)

hijη
iηj positive de�nite ⇔ k > 0⇔ elliptic paraboloid

hijη
iηj inde�nite ⇔ k < 0⇔ hyperbolic paraboloid

hijη
iηj semide�nite ⇔ k = 0⇔ parabolic cylinder

all hij = 0⇔ k1 = 0; k2 = 0⇔ �at point (dt. Flachpunkt)

K > 0 K = 0 K < 0
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Di�erential Geometry

Surface Theory

Representation of the Surface

Another possibility to characterize local curvature is to use the

so-called Dupin indicatrix, which in fact is strongly linked to the

section curve. The section curve is obtained by intersecting the

surface with planes that are close and parallel to the tangential

plane. This section approximates a conic section that is homothetic

to the Dupin indicatrix.
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Dupin Indicatrix)

By Euler's theorem X(λ1, λ2) = k, cos2 ϕ+ k2 sin2 ϕ the following

geometric constructs can be derived:

Plot a straight-line segment of length 1

|X|
1
2
from the origin of a

planar Euclidean coordinate frame in each direction where the

principal directions are used as coordinate axes →
±1 = k1(z1)2 + k2(z2)2
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Dupin Indicatrix) cont'd

Put the indicatrix with its z1- and z2-axis respectively in the
pricinipal directions of the corresponding tangential plane of
the current surface point.

1 Indicatrix is an ellipsis � elliptic point
2 Indicatrix is pair of hyperbolae � hyperbolic point
3 Indicatrix is pair of straight lines � parabolic point
4 Indicatrix degenerates to a point � �at point
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Asymptotic Line)

The zero directions of the second fundamental form are called

asymptotic directions. A surface curve with its tangent vectors

pointing in the asymptotic direction at every point is called

asymptotic line.
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Di�erential Geometry

Surface Theory

Asymptotic Line Remarks

1 The normal curvature of an asymptotic line vanishes (kn = 0)

if k 6= 0 the principal normal vector is orthogonal to the

surface normal (e2 ⊥ N).

2 Each straight line on a surface is an asymptotic line.

3 Asymptotic directions only exist for hyperbolic curvatures

(k < 0).

4 Asymptotic directions are invariant under motions and

parameter transformations.
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Curvature Line Parameters and
Asymptotic Line Parameters)

A parameterized surface X (u,w) is called in relation to curvature

line parameters or asymptotic line parameters respectively if the

parameter lines u1 = const; u2 = const are curvature lines or

asymptotic lines respectively.
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Di�erential Geometry

Surface Theory

Curvature Line Parameters and

Asymptotic Line Parameters Remarks

1 X (u,w) is in relation to curvature line parameters i�

Ni = kiXi .

Equivalent to this is: g12 = h12 = 0 (hii = kigii i = 1, 2).
Curvature lines form a orthogonal network on all surfaces no

matter how they are curved.

2 X (u,w) is in relation to asymptotic line parameters i�

h11 = h22 = 0.

Asymptotic lines are not of high technical relevance. They only

exist on surfaces with a negative curvature.
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Di�erential Geometry

Surface Theory

Curvature Line Parameters and

Asymptotic Line Parameters Remarks cont'd

3 A surface curve is a curvature line i� the ruled surface

(dt. Regel�äche) formed by the surface normal along the curve

is a developable surface.

4 Curvature lines form an orthogonal curve grid on the surface.

5 Asymptotic lines form an orthogonal curve grid on a minimal

surface.
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Di�erential Geometry

Surface Theory

Representation of the Surface

Trying to carry over the principle of the Frenet equations, we get

the derivative equations and the integrability conditions:

De�nition (Gaussian Frame)

Gaussian frame {X1,X2,N}

Ni =− hki Xk

Xij =Γr
ijXr + hijN

with Γr
ij = g rsΓijs and Γijk = 1

2

(
∂gjk
∂ui

+ ∂gik
∂uj
− ∂gij

∂uk

)
The derivative equations are the surface-theoretic analogon to the

Frenet equations for curves.
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Integrability Conditions)

In curve theory, given continuous functions k(s) (with k > 0) and

τ(s) imply existence and uniqueness of a curve segment. The

analogue problem is wether given {gij} and {hij} imply existence

and uniqueness of a surface segment.
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Di�erential Geometry

Surface Theory

Representation of the Surface

De�nition (Integrability Conditions) cond't

We need the so-called integrability conditions:

∂Xij

∂uk
=
∂Xik

∂uj
and

∂Ni

∂uj
=
∂Nj

∂ui

∂Γr
ij

∂uk
−
∂Γr

ik

∂uj
+ Γs

kjΓ
r
sk − Γs

ikΓk
sj = hijh

r
k + hikh

r
j

∂hij
∂uk
− ∂hik
∂uj

+ Γs
ijhsk − Γs

ikhsj = 0

(Christo�el-sysmbols are no geometric invariants like torsion and

curvature!)
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Di�erential Geometry

Surface Theory

Representation of the Surface

Theorem (Fundamental Theorem of Surface Theory)

In a region U ⊂ R2 let functions g̃ij of class C2 and functions h̃ij of
class C1 be given with the following properties:

1 g̃ij = g̃ji and h̃ij = h̃ji
2 (λ1, λ2) 7→ g̃ijλ

iλj is positivie de�nite

3 the integrability conditions are satis�ed

then there is a parameterized surface X : U → E3 of class C3 with

gij = g̃ij and hij = h̃ij .
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Di�erential Geometry

Surface Theory

Representation of the Surface

The situation of curvature can be de�ned with scalars like

curvature, normal-section-curvature and mean curvature but it is

also possible to de�ne curvature tensors. A tensor is a generalized

vector, invariant under parameter transformation.

De�nition (Curvature Tensor)

R r
ikj :=

∂Γr
ij

∂uk
−
∂Γr

ik

∂uj
+ Γs

ijΓ
r
sk − Γs

ikΓr
sj

Representation of the Surface

Theorema Egregium by Gauss

K only depends on the �rst fundamental form because one has:

K = R1212
g .
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

We will now brie�y introduce some basics from tensor calculus to

enable a better understanding of the curvature tensor and tensors

in general.

De�nition: Mathematical Model of a Tensor

Let V be an n-dim. vector space, V ∗ its dual space. A tensor of

type (r , s) (r contravariant and s covariant indices) over V is a

multilinear form T :

T : V × V × . . .× V︸ ︷︷ ︸
r copies

×V ∗ × V ∗ × . . .× V ∗︸ ︷︷ ︸
s copies

→ R

r , s ∈ N; r + s > 0

(r + s) is called the order of the tensor.
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

Applying such a multilinear map T of type (s, r) to a basis

{E1, . . . ,Er} for V and a canonical basis {E 1, . . . ,E s} for V ∗, one
obtains the following (r + s)-dim. array of components:

t j1,...,jsi1,...,ir
:= T (Ei1 , . . . ,Eir ,E

j1 , . . . ,E js )

Such an array can be realized as the components of some

multilinear map T . This motivates viewing multilinear maps as the

intrinsic objects underlying tensors. There is also a component-free

de�nition of the notion of a tensor. Using this, e.g. an intrinsic

geometric statement (like the gaussian curvature) can be described

by a tensor �eld on a manifold without the need to reference

coordinates.
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

Note: Do not let yourself get confused by the following de�nitions

speaking of type (s, r)-tensors instead of type (r , s). This is due to

an error before translating the script into English, where r ans s
have been swapped in the tensor de�nition. As the subscript always

denotes the covariant and the superscript the contravariant indices,

it seemed more convenient to prevent index errors in the formulas

by swapping the variables in the type rather than the equations.

If there is time enough, the equations will be updated, though.
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

Applying such a multilinear map T of type (s, r) to a basis

{E1, . . . ,Er} for V and a canonical basis {E 1, . . . ,E s} for V ∗, one
obtains the following (r + s)-dim. array of components:

t j1,...,jsi1,...,ir
:= T (Ei1 , . . . ,Eir ,E

j1 , . . . ,E js )

Such an array can be realized as the components of some

multilinear map T . This motivates viewing multilinear maps as the

intrinsic objects underlying tensors. There is also a component-free

de�nition of the notion of a tensor. Using this, e.g. an intrinsic

geometric statement (like the gaussian curvature) can be described

by a tensor �eld on a manifold without the need to reference

coordinates.
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

Remarks

1 The elements of V ∗ are tensors of type (0, 1). They are called

covariant vectors.

2 The elements of V can be identi�ed with the tensors of type

(1, 0) as V ∗∗ and V are canonically isomorphic. They are

called contravariant vectors.

3 The set T (r , s) of type (r , s) tensors consitutes a vector space

with �the usual relations� of dimension r + s.

4 Because of their special behavior under transformations,

tensors are a convenient tool for the description of

�geometrically technical� properties.
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus
notations: tensor components ↔ �coordinates�

Let {E1, . . . ,En} denote a basis of V and {E 1, . . . ,En} the dual

basis of V ∗, i.e.
E iEj = δij ; (Kronecker delta: δ = 1 if i = j , else δ = 0)

Aν = ajνEj (contravariant: �upper index j�; ∈ V );

Bν = bνj E
j (covariant: �lower index j�; ∈ V ∗)

T (A1, . . .Ar ,B
1, . . . ,Bs) = T (ai11 Ei1 , . . . , a

ir
r Eir , b

1
j1E

j1 , . . . , bsjsE
js )

=T (Ei1 , . . . ,Eir ,E
j1 , . . . ,E js )ai11 · · · a

ir
r b

1
js · · · b

s
js

=t j1,...,jsi1,...,ir
ai11 · · · a

ir
r b

1
js · · · b

s
js

=t̃k1,...ksl1,...lr
ãl1(1) · · · ã

lr
(r)b̃

(1)
k1
· · · b̃(s)

ks

The nr+s numbers t j1,...,jsi1,...,ir
are called the coordinates or

components of the tensor T .
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus
Transformation Behavior of Tensor Components under Basis

Transformation:

Let Ẽi = αj
iEj , resp. Ẽ

i = α̌i
jE

j with {α̌i
j} inverse to {αj

i}
ãi = ar α̌i

r �contravariant�; b̃i = brα
r
i �covariant�

The tensor components transform like the basis!

A(1), . . . ,A(r) ∈ V ; B(1), . . . ,B(s) ∈ V ∗

T (A(1), . . . ,A(r),B
(1), . . . ,B(s)) = t j1,...,jsi1,...,ir

ai1(1) · · · a
ir
(r)b

(1)
j1
· · · b(s)

js

=t̃k1,...ksl1,...lr
ãl1(1) · · · ã

lr
(r)b̃

(1)
k1
· · · b̃(s)

ks

=t̃k1,...ksl1,...lr
α̌l1
i1
· · · α̌lr

ir
αj1
k1
αjs
ks
ai1(1) · · · a

ir
(r)b

(1)
j1
· · · b(s)

js

therefore, we get the following transformation behavior:
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Di�erential Geometry

Surface Theory

Introduction to Tensor Calculus

Transformation Behavior of Tensor Components under Basis

Transformation:

t̃ i1,...iij1,...js
= tk1,...,ksl1,...,lr

αl1
i1
· · ·αlr

ir
α̌j1
k1
· · · α̌js

ks

The arc length
(
ds
dt

)2
= gij

dui

dt
duj

dt satis�es this situation.

Theorem: Tensor Transformation Behavior

Let there be nr+s numbers t j1,...,jsi1,...,ir
for every base of V . These

systems constitue the components of a tensor of type (r , s) i�. the
transformation behavior de�ned above holds.
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Tensor Operations

Tensors of same type can be added and be multiplied with

scalars.

Tensor product: Let T (s, r)-tensor; T̃ (s̃, r̃)-tensor

TT̃ (A1, . . . ,Ar+r̃ ,B
1, . . . ,Bs+s̃)

:=T (A1, . . . ,Ar ,B
1, . . .Bs) · T̃ (Ar+1 . . .Ar+r̃ ,B

s+1, . . .Bs+s̃)

is called the tensor product of T and T̃ . In components:

(tt̃)j1,...,j
s+s̃

i1,...,ir+r̃
:= t j1,...,jsi1,...,ir

t̃
js+1,...,js+s̃

ir+1,...,ir+r̃

TT̃ is a tensor of type (s + s̃, r + r̃).
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Tensor Operations

Contraction: Let T (s, r)-tensor, where r , s,≥ 1.

t j1,...,jsi1,...,ir
7→ t jlik · t

j1,...,jl−1,jl+1,...,ks
i1,...,ik−1,ik+1,...,ir

is called the tensor contraction of T with respect to the k-th
covariant and the l-th contravariant index. This procedure

yields a tensor of type (s − 1, r − 1).

Example: g ij ; hrs −−−→
mult

g ijhrs 7→ g ijhis 7→ g ijhij = 2h

raising and lowering indices with respect to a symmetric,

non-degenerate fundamental (metric) tensor:

t j1,...,jsi1,...,ir
7→ gkl t j1,...jsl ,i2,...,ir

=: tk,j1,...,jsi1,...,ir

t j1,...,jsi1,...,ir
7→ gkl t

l ,j2,...,js
i1,...,ir

=: t j2,...,jsi1,...,ir ,k
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Example for raising an index:

One gets the matrix of the Weingarten map by raising an index in

the matrix of the second fundamental form with g rj :

hji = hirg
rj
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Covariant Di�erentiation and Parallelity:

The usual partial di�erentiation of a tensor does not yield another

tensor. One thus has to come up with a more general method.

Such a method is given by the covariant di�erentiation which we

will discuss in the following.

The process of di�erentiation is to be formulated in a way that

makes an arbitrary derivative of a tensor yield another tensor. This

means nothing else than that this di�erentiation has to be

independent from the coordinates.
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Motivation:

Xij = Γr
ijXr + hijN,

where Γijk = 〈Xik ,Xj〉 = 1
2

(
∂gjk
∂ui

+ ∂gik
∂uj

+
∂gij
∂uk

)
and Γr

ij = g rsΓijs
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Motivation:

The Christo�el symbols Γk
ij are not components of the tensor!

Γk
ij = Γ̃l

rs

∂ũr

∂ui
∂ũs

∂uj
∂uk

∂ũl
+

∂2ũl

∂ui∂uj
∂uk

∂ũl

but Xij − Γr
ijXr = hijN is geometrically invariant.

In the context of the inner geometry of a surface, only vector �elds

Z that are tangential along the plane are of interest. The

derivatives will in general not be tangential vector �elds anymore.

Therefore, we de�ne:

∇Z
dt

:=
dZ

dt
−
〈dZ
dt
,N
〉
N

With these motivations, we now turn to the exact de�nitions:
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Theorem and De�nition: Covariant Derivative of a Tensor

Let A an (s, r)-tensor with components aq1,...,qsl1,...,lr
. The numbers

aq1,...,qsl1,...,lr

∣∣∣
i

=
∂aq1,...,qsl1,...,lr

∂ui

−
r∑

m=1

aq1,...,qsl1,...,lm−1,k,lm+1,...,lr
Γk
ilm

+
s∑
m1

a
q1,...,qm−1,p,qm+1,...,qs
l1,...,lr

Γqm
pi

are the components of an (s, r + 1)-tensor. This tensor is called the

covariant derivative of the tensor aq1,...,qsl1,...,lr
with respect to gik .
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Important Special Cases:

akj

∣∣∣
i

=
∂akj
∂ui
− akr Γr

ij + asj Γk
si

ajk |i =
∂ajk
∂ui
− arkΓr

ij + ajsΓs
ki

ajk
∣∣
i

= ∂ajk

∂ui
− arkΓj

ri + ajsΓk
si

Gaussian derivative equations: X |ij = hijN

A very important application of the covariant di�erentiation is the

de�nition and determination of parallels and geodesics.
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De�nition: Covariant Derivative of a Vector Field

Let XU → R3 a surface, C = X ◦ U : I → E3 a surface curve, and

Z : I → E3 a tangential vector �eld along C , i.e. Z (t) ∈ Tc(t)X .

The covariant derivative of Z in t is the vector

pr ◦
dZ (t)

dt
=:
∇dZ (t)

dt

where pr(t) : Tc(t)R3 → Tu(t)X .
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Theorem:

The covariant derivative dZ(t)
dt of a tangential vector �eld Z (t)

along the surface curve C (t) = X ◦ U(t) is independent from the

choice of parameters for the surface. This derivative is an object of

the inner surface geometry.

For Z (t) = ξk(t)Xk ◦ U(t), one obtains:

dZ (t)

dt
= ξ̇kXk + ξi u̇j(Γk

ijXk + hijN) and thus:

∇Z (t)

dt
≡ {ξ̇k(t) + ξi (t)u̇j(t)Γk

ij ◦ U(t)}Xk · U(t)
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Directed Covariant Derivative

The terminology de�ned above can be used to de�ne the covariant

derivative of the tangential vector �eld Z in the direction of a

tangential vector �eld Y :

∇Z = TUX → TUX

y 7→ ∇Z ◦ (U(0))

dt

where ∇Z◦(U(0))
dt =

(∂ξk
∂uj

(u(0)) + ξi (u(0))Γk
ij(u(0))

)
u̇j(0)Xk ,

y = ηjXj , and c(t) = X ◦ u(t) is a surface curve with

uj(0) = uj0; u̇j(0) = ηj , and z = ξkXk ; especially, we have
∇Z(t)
dt = ∇Z (ċ(t))
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De�nition: Parallelity

Let c(t) = X ◦ u(t) a surface curve and Z (t) a vector �eld along c .

Z is called parallel along c if dZ(t)
dt = 0.

Di�erential Equation of Parallel Transport:

Z (t) = ξi (t)Xi ◦ u(t) is parallel along c(t) i�.

ξ̇k(t) + ξi (t)u̇j(t)Γk
ij ◦ u(t) = 0.

This de�nition is a generalization of the notion of parallelity in the

plane, as if X (t) and Y (t) are parallel vector �elds along c ,
gc(t)(x , y) = const., i.e. the angles are equal for all values of the

parameter t.
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The Levi-Civita-Connection:

The di�erential equation for parallel transport de�nes some kind of

"connection" that enables the transport of given tangential vectors

(A = ajxj) along a surface curve. This connection is called the

Levi-Civita connection and the equations for parallel transport

are called the equations for the Levi-Civita connection.
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The Levi-Civita connection arises from the aim to compare tangent

vectors bound to di�erent points of a surface with respect to their

direction. The connection is a map that allows to transport tangent

vectors from one point of a surface S along a curve C on S to

another point on F . The vectors obtained this way are called

parallel along C with respect to the connection.
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Properties of the Levi-Civita Connection:

The length of a surface vector does not change under the

Levi-Civita connection.

The angle enclosed by two surface vectors bound in the same

point does not chance if both vectors are transported along

the same curve.

The Levi-Civita connection is "compatible with the

metric"

Prof. Dr. Hans Hagen Geometric Modelling Summer 2018 62



Di�erential Geometry

Surface Theory

Parallelity and Levi-Civita Connection

Under which conditions is the parallel transport independent from

the path?

Theorem: Path Independence of Parallel Transport

Let X : U → E3 be a surface. Then, the following statements are

equivalent:

The Gaussian curvature vanishes, i.e. K (u) = 0

One can introduce local parameters with gij = δij

The parallel transport is path-independent

X (u) is locally isometric to an open subset of the Euclidian

plane E2
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Remarks:

These statements do not hold globally!

If two surfaces X and X̃ have the same constant curvature,

they are locally isometric:
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Based on these results, we give another illustration of the

Levi-Civita connection:

The Levi-Civita connection is an inner property of the surface.

However, one can of course include the embedding of the surface in

space into the consideration. Due to the invariance of the

connection for length-preserving maps, one can perform transport

of a vector along a curve C on a surface S lying in Euclidian space

in a geometrically descriptive manner:
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Choose a developable surface (= torse) T (i.e. a surface with

vanishing Gaussian curvature K = 0; either a cylinder, a cone or a

tangent plane), that touches the surface along the surface curve C .

Map T to the plane preserving the lengths and move the given

surface vector parallel along the image C ∗ of C . Now, map the

vectors obtained this way back to T by the inverse of the

length-preserving map used to map T to the plane. These vectors

are now identical to the surface vectors of S obtained by the

transport of a given surface vector of S along the surface curve C .
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We now focus on the geodesic curvature kg :

For a surface curve y(t) = X (u1(t), u2(t)), we have

y ′′ = kn · N + kg [N, y ′] and thus kg = det(N, y ′, y ′′) = |N, y ′, y ′′|.

The absolute value of the geodesic curvature |kg | is equal to the

curvature k∗ along curve y∗(t) (in point P), where y∗ is the
orthogonal projection of y(t) into the tangential plane (in point P).

The geodesic curvature is determined by the �rst fundamental form

and therefore a varibale of the inner geometry.
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De�nition: Geodesic Lines

A curve that lies inside a surface and whose geodesic curvature kg
vanishes identically, is called a geodesic line.

kg = 0→ y ′′ = knN →
∇y ′(t)

dt
= 0

Di�erential equation of geodesic lines:

ük − Γk
ij u̇

i u̇j = 0

One directly �nds that geodesics are autoparallels (i.e. ξi = u̇i ).
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Applying variational calculus to answer the question for the shortest

part of a curve that connects two points yields the corresponding

Cauchy-Euler euqation (sometimes called Euler's equation or

Euler's di�erential equation):

− ∂h
∂f i

+
d

dt

( ∂h
∂ ḟ i

)
= 0, where f i = ui and h =

√
gij ḟ i ḟ j

One directly �nds that this again yields the di�erantial equation for

geodesic lines.

The shortest connection of two points on a surface is part of a

geodesic line.

In every point, in every direction exactly one geodesic starts!
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Geodesics are not only lines with vanishing geodesic curvatue and

autoparallels but also locally shortest connections of points!

Utilizing geodesics, one can introduce special coordinate systems

analoguous to planar orthogonal systems or planar polar

coordinates. Such coordinate systems serve well for di�erent

application purposes.

Figure: Geodesic coordinates. L(b) ≥ L(c) if b(t) lies completely inside the "geodesic �eld".
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Special Surfaces

Ruled Surface, Developable Surface

A surface is called a ruled surface if it can be locally

parameterized in the form X (u,w) = y(u) + w · z(u).

A ruled surface is called a developable surface (sometimes: torse)

if the normal vector is constant along each generating line. This is

the same as zero Gaussian curvature.
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Theorem: Classi�cation of Developable Surfaces

A ruled surface is developable i�. for every natural

parameterization (= arc length parameterization) one has

X (u,w) = y(u) + w · z(u).

det(x1, x2, x12) = 0.

A C3-surface without �at points (i.e. without points where the

torsion vanishes) is developable i�. the Gaussian curvature

vanishes (K ≡ 0).

A developable surface is either a cylinder, a cone, or a tangent

plane.
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Minimal Surfaces:

The necessary condition for a surface X (u) to have minimal area

among the surfaces to be compared is H ≡ 0, where H denotes the

mean curvature. A surface with vanishing mean curvature is called

a minimal surface.

Remarks

1) Surface parts of minimal area that have a �xed boundary are

always parts of minimal surfaces.

2) For every simply closed Jordan curve there exists at least one

minimal surface part whose boundary is said curve.

3) A surface of class r ≥ 3 is a minimal surface or the surface of

a sphere i�. its spherical map is a conformal map (i.e. it

preserves angles locally).
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Remarks

4) Minimal surfaces cannot possess elliptical points.

5) Let X (u) be based on isothermic parameters

(g11 = g22; g12 = 0). Then, X (u) is a minimal surface i�

X11 + X22 = 0. The solutions to this Laplace di�erential

equation are harmonic functions and thus the real part of a

holomorphic function and thereby a real-valued analytic

function. Therefore, minimal surfaces are analytic surfaces!

6) The possibility to introduce isothermic parameters on a surface

M with Riemannian metric implies that M can be provided

with a complex structure that makes M a Riemannian surface

with respect to complex analysis (the theory of functions of a

complex variable).
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