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Analytic and

Projective Geometry

Notes on Higher Order Vector Spaces

In this course: exterior product mainly introduced for areas

and volumes

In 3d, this is done by the cross product (~a× ~b = ~a ∧ ~b in 3d)

Higher dimensions: Use Wedge-product to determine a

subspace of proper dimension

Theorem: "Volume Property of the Determinant"

‖~a1 ∧ ~a2 ∧ . . . ∧ ~ak‖ is the volume of the k-dim. parallelotope

spanned by ~a1, ~a2, ..., ~ak in En (k < n):

‖~a1 ∧ . . . ∧ ~ak‖ =

∣∣∣∣∣∣∣
〈~a1, ~a1〉 . . . 〈~a1, ~ak〉

...
. . .

...

〈~ak , ~a1〉 . . . 〈~ak , ~ak〉

∣∣∣∣∣∣∣
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Analytic and

Projective Geometry

Projective Geometry
Geometric Motivation

Example: Tranfering objects from R2 into P2

An artist with eye O draws objects from an in�nite �oor F on

an in�nite canvas C
Basically, this is done by by calculating the intersection of the

line through O and a point P with C

Figure: Setup for the projection from F to C
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Analytic and

Projective Geometry

Projective Geometry
Geometric Motivation

The artist cannot draw points whose connection to O would

be parallel to F → Horizon

Parallel lines in F meet in the horizon in C
In real images, the Horizon usually bisects the image into the

part in front of the artist and e.g. the sky

Figure: The horizon H. Points in this plane cannot be projected from F to C .
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Analytic and

Projective Geometry

Projective Geometry
Geometric Motivation

The border dinstincting "behind" and "in front of" the artist is

marked by the plane parallel to C containing O
Objects crossing this border are split into two, one half

projected upside down

Lines meeting in this border are parallel on C

Figure: Border B. Sometimes, the projection may be restricted to one side of this border.
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Analytic and

Projective Geometry

Projective Geometry

Exercise

Let the �oor F be denoted by z = 0, the canvas C by x = 0 and

the eye O = (1, 1, 1)T .

a) Find the Horizon.

b) Find the image on C of a line parameterized in F by

ax + by = c .
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Analytic and

Projective Geometry

Projective Geometry

Solution

Let the �oor F be denoted by z = 0, the canvas C by x = 0 and

the eye O = (1, 1, 1)T .

a) Find the Horizon.

Horizon: line in C de�ned hy H =

0

0

1

+ t ·

0

1

0


b) Find the image on C of a line parameterized in F by

ax + by = c .
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Analytic and

Projective Geometry

Projective Geometry

Solution

b) Find the image on C of a line parameterized in F by

ax + by = c .
Procedure: 1) Solve for y : y = 1

b (c − ax)→ r
2) compute the line from a point on that line through O in

parametric two-point form:

r =

1

1

1

+ t ·

1

1

1

−
 x

c
b − x a

b
0



Benjamin Karer M.Sc. Geometric Modelling Summer 2018 10



Analytic and

Projective Geometry

Projective Geometry

Solution

b) Find the image on C of a line parameterized in F by

ax + by = c .
r = (1, 1, 1)T + t (̇1− x , 1− c

b + x a
b , 1)

T

Procedure: 3) Intersect r with C :
Normal on C : ~n = (1, 0, 0)T . This normal is already

normalized. Put r into the Hesse form of the plane to get the

intersection:

〈~n, r〉 = 0⇔ 〈

1

0

0

 ,

1

1

1

+ t ·

 1− x
1− c

b + x a
b

1

〉 = 0

⇒ 0 = 1+ t − xt
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Analytic and

Projective Geometry

Projective Geometry
Solution

b) Find the image on C of a line parameterized in F by

ax + by = c .
r = (1, 1, 1)T + t (̇1− x , 1− c

b + x a
b , 1)

T and 0 = 1+ t − xt
Procedure: 4) Solve for t and insert result into r to get the

intersection. Solving for t, we get t = −1
1−x , thus the

intersection of ax + by + c with C is given by:

P ′ =

1

1

1

+
−1
1− x

·

 1− x
1− c

b + x a
b

1


=

 0

1+ 1
1−x ·

(
c
b − x a

b − 1
)

− x
1−x
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Analytic and

Projective Geometry

Projective Geometry
Computer Graphics

In Computer Graphics, the scene is usually restricted to objects

behind the canvas C

The eye point (camera) is still in front of C

Projection works the same as before → Pixel Shader

Figure: Setup for Pixel Shader. The cone limits the part of the scene rendered to the canvas C .
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Analytic and

Projective Geometry

Projective Geometry
Computer Graphics

Introduce homogeneous coordinates and make the (3d-)scene

a projective space

Then, the perspective transformation of the scene to the

canvas is de�ned as follows:

Let d denote the distance of the eye to the canvas and the eye be

at position (0, 0, d)T looking into direction −z . The central
projection of a point P in the scene to a point P ′ in the canvas is

given by P ′ = MP , where

M =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 −d−1 1
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Analytic and

Projective Geometry

Projective Geometry

Principle of Duality

The principle of duality in projective spaces allows us to prove an

"easier" theorem to get a proof for a less intuitive, more

complicated phenomenon. When looking at a theorem in projective

space, always keep in mind the consequences of the dual form.

Exercise

Three pairwise non-parallel lines in R2 which do not all pass

through the same point, disconnect the plane into seven connected

components.

a) What happens if this is done in the projective plane?

b) Formulate the dual statement to the result you found.
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Analytic and

Projective Geometry

Projective Geometry
Solution

a) Situation:

Observation: Three lines subdivide the projective plane into

eight uniquely de�ned bordered subspaces.

b) Formulate the dual statement to the result you found.
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Analytic and

Projective Geometry

Projective Geometry
Solution

b) Situation:

Dual Proposition: Three points in P2 that are not

connected by the same line de�ne eight subspaces in P2.

Note: As these subspaces are all triangles in P2, it follows that

three points do not uniquely determine a triangle in the projective

plane!
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A�ne Geometry

A�ne Geometry
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A�ne Geometry

Course Progess

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 19



A�ne Geometry

A�ne Transformations
Let ~X a set of points. The application of an operator or a mapping

to ~X is interpreted as the apllication to every ~x ∈ ~X .

Remember from the lecture:

A�ne Transformation

A�ne Transformations are transformations that:

preserve collinearity and coplanarity of points (i.e. preserve

lines and planes)

preserve ratios of vectors along lines

preserve parallelity

They can be represented as "a linear transformation plus a vector":

~y = A~x + ~a where det(A) 6= 0
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A�ne Geometry

A�ne Transformations

Translation: ~Y =

(
1 0

0 1

)
~X +

(
tx
ty

)

Translation is a special case where the linear map is the identity.
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A�ne Geometry

A�ne Transformations

Rotation: ~Y =

(
cosϕ − sinϕ
sinϕ cosϕ

)
~X +

(
0

0

)

This linear equation provides the rotation around an angle ϕ for an

object that is centered in the o�spring. Generally, the object has to

be translated to the o�spring before rotation and moved back

thereafter. To rotate around an arbitrary point, the o�spring has to

be moved into that point by translation of the coordinate system.
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A�ne Geometry

A�ne Transformations

Scaling: ~Y =

(
sx 0

0 sy

)
~X +

(
0

0

)

Scaling can destroy orthonormality, orthogonality, Cartesian system,

right-hand-system (negative factors!), normal lengths, and normals!
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A�ne Geometry

A�ne Transformations

For technical reasons, we would like to model all these

transformations as linear maps. This would allow us to exploit the

linearity of the maps and multiply the transformation matrices to

encode multiple transformations in a single matrix.

Idea: use a�ne coordinates!
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A�ne Geometry

A�ne Transformations

Remember from the lecture:

Integration of the Classical Geometries in the Sense of the

Erlangen Program:

Consider the subgroup of the projective group (i.e. the

corresponding geometry) which �xes a hyper plane. We so to say

"tag" this hyperplane as absolute �gure at in�nity and restrict

the e�ect of the subgroup of the transformation group to the

points that are not incident with this hyperplane.

This precedure yields a�ne transformations by restricting the

projective transformations to the points that are not at in�nity.

The a�ne group then reveals itself as a subgroup of the

projective group.
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A�ne Geometry

A�ne Transformations
"The Procedure in Coordinates": P3 (x0 = 0 is mapped to y = 0)

y0
y1
y2
y3

 =


a00 0 0 0

a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 ·

x0
x1
x2
x3


→

y1
y2
y3

 =

a10 · x0 a11 · x1 a12 · x2 a13 · x3
a20 · x0 a21 · x1 a22 · x2 a23 · x3
a30 · x0 a31 · x1 a32 · x2 a33 · x3


→ restrict to the points not at in�nity (divide by x0)

→

y1
y2
y3

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 · (x1
x0

x2
x0

x3
x0

)T

+

a10
a20
a30


a�ne transformation

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 26



A�ne Geometry

A�ne Transformations

This means that e.g. P2 can be constructed from the a�ne plane

by adding a line at in�nity whose points are the equivalence classes

of parallel lines in the a�ne plane. Conversely, the a�ne group can

be obtained from P2 by removing an arbitrary line and all the

points on it.

Applying this precedure backwards, e.g. for the rotation around the

z-axis, we get:y1
y2
y3

 =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 · (x1 x2 x3)
T +

0

0

0
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A�ne Geometry

A�ne Transformations

Add a line at in�nity, e.g. (0 0 0 x0)
T :y1

y2
y3

 =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 · (x1
x0

x2
x0

x3
x0

)T

+

0

0

0


y1
y2
y3

 =

0 · x0 cosϕ · x1 − sinϕ · x2 0 · x3
0 · x0 sinϕ · x1 cosϕ · x2 0 · x3
0 · x0 0 · x1 0 · x2 1 · x3
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A�ne Geometry

A�ne Transformations

Obtain the homogeneous representation, set x0 = 1:
1

y1
y2
y3

 =


1 0 0 0

0 cosϕ − sinϕ 0

0 sinϕ cosϕ 0

0 0 0 1

 ·

1

x1
x2
x3
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A�ne Geometry

A�ne Transformations

The homogeneous coordinate is often written as the last

coordinate. The equation then becomes:
y1
y2
y3
1

 =


cosϕ − sinϕ 0 0

sinϕ cosϕ 0 0

0 0 1 0

0 0 0 1

 ·

x1
x2
x3
1
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A�ne Geometry

A�ne Transformations

For the other rotations and scaling, one obtains:

rotation (x-axis):


y1
y2
y3
1

 =


1 0 0 0

0 cosϕ − sinϕ 0

0 sinϕ cosϕ 0

0 0 0 1

 ·

x1
x2
x3
1



rotation (y-axis):


y1
y2
y3
1

 =


cosϕ 0 sinϕ 0

0 1 0 0

− sinϕ 0 cosϕ 0

0 0 0 1

 ·

x1
x2
x3
1



scaling:


y1
y2
y3
1

 =


s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 1

 ·

x1
x2
x3
1
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A�ne Geometry

A�ne Transformations

Exercise

What is the map for the translation?

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 32



A�ne Geometry

A�ne Transformations

Solution

What is the map for the translation?

Analoguously to obove, one obtains:
y1
y2
y3
1

 =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 ·

x1
x2
x3
1
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A�ne Geometry

A�ne Transformations

Now, we can exploit the linearity of the maps to construct more

complicated maps by multiplying these basic ones. For example,

the rotation around an arbitrary axis can be reduced to the rotation

around one of the coordinate axes by properly transforming the

coordinate system �rst.

Exercise

The transformation matrices for rotations given above rotate

objects around an axis with respect to the o�spring. To rotate an

object around one of its own axes, one would need to rotate with

respect to the center of mass of this object. In complex scenes, this

is usually not the o�spring.

How can this problem be reduced to rotating with respect to the

o�spring?
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A�ne Geometry

A�ne Transformations

Solution

How can the problem be reduced to rotating with respect to the

o�spring?

Transformation: The coordinate system has to be moved s.t. the

o�spring is in the point used for the rotation. After the rotation,

the coordinate system has to be translated back to its original

position. Let P the point that is the center of the rotation, Rz(ϕ)
the rotation itself. Then, by multiplying the transformation

matrices, we get:

Rz(P, ϕ) = TP · Rz(ϕ) · T−1P

where TP is the map that translates a given point by the position

vector of P .
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