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Course Progess

Analytic Geometry Projective Geometry

Affine Geometry,
Hyperbolic/Elliptic

Geometry Erlangen Program

Vector Calculus

v

Differential Geometry

l

Clifford Algebra

l

Applications:
* Offset Curves/Surfaces
* Interpolating Triangle Patches
* Variational Design
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Equivalence of Curves

e If the image of a curve is given, different parameterizations can

be defined

@ Differential Geometry: Describe properties of curves invariant
under certain reparameterizations:
— need to define a proper equivalence relation on parametric
curves

@ Properties of the equivalence class are invariant under
reparameterization:

o Length

e Frenet Frame

e Curvature, Torsion
These properties uniquely define a curve (up to Euclidean
motion)
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Equivalence of Curves

Equivalence of Curves, Reparameterization, Parameter

Transformation

Two curves X : M — R" and Y : N — R" are equivalent if there
exists a bijective C"-map ¢ : M — N s.t. fort € M ¢'(t) # 0 and
Y (6(t)) = X(¢).

Y is called the reparameterization of X, ¢ is called a parameter
transformation for X.

Note that this is equivalent to the definition given in the lecture.

x{ty' N{SJ

T(t)
Diffeomorphism

7

»Reparametrization”
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Arc Length Parameterization

The Length of a Curve Segment:
Define the length of a C! curve X : t — R":

b
L(a, b) = / X' (8) | dt

This length is invariant under reparameterization and thus a
differential geometric property.

If the curve is given as a parametric curve in Cartesian coordinates
X(t) = (xa(t),...,xn(t))", the equation becomes:

B
L(a, B) :/ \/x'12 + ..+ X odt

where oo and 3 are the values of t at x = a and x = b respectively.

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 6



Ditrerential Geometry —

‘l ! Computer Graphics
=" and HCI Group

AG Computergrafik und HCI C u rve T h eory

Arc Length Parameterization

Computation of the Arc Length Parameterization:
For a regular C"-curve (i.e. r > 1), we can define the length of the
arc from 0 to t:

(1) = /0 X' (8) | dt

Now, we need the inverse of this curve, t(s) and reparameterize the
curve by replacing every occurence of the parameter t by t(s).

Again, if the curve is given as a parametric curve in Cartesian
coordinates X (t) = (x1(t),...,xn(t))", the equation becomes:

t
s(t) :/ X1% 4+ ...+ X, 2dt
0

Reparameterization yields: X(t(s) = (x1(t(s)), ... xa(t(s)))".
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Arc Length Parameterization

Example: The circle X(t) = (rcost, rsint,0)" is to be
parameterized by the arc length.

First, calculate the length of the tangent vector from 0 to t:

s(t):/o HX’(t)||dt:/0 \/(—rsint) + (rcost)? + 02dt

t t
:/ \/r2 - (sin? t + cos? t)dt / rdt = rt
0 0

Now, the inverse function of s(t) = rt is t(s) = 2.
Reparameterizing the original circle by replacing t by >, we obtain
the arc length paramaterization:

-
X(s) = (rcos E, rsin E,O)
r r
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Arc Length Parameterization

Remarks:

@ Curves are only distinguished by the ways they bend
(curvature) and twist (torsion)

@ Arc length paramaterization helps for theoretical arguments as
for a particle moving along the curve, all curves would "look
the same' without further information about the space

@ In practice often difficult to calculate (helpful: piecewise linear
approximations)

@ For a given parameterized curve X, the arc length
parameterization is unique up to parameter shift
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Arc Length Parameterization

Remarks:

@ Interesting for technical applications: In arc length
parameterization, a particle s traverses the curve X at unit
speed (|| X"(s)[| =1 Vs)

@ If the arc length parameterization is known, it is easy to
calculate:

o The Frenet frame: with HXH =1 and || X|| # 0:

o Tangent vector: T = X (this is a unit vector as || X|| = 1)

X

@ Principal normal vector: N = XN

e Binormal vector: B = [T, N]

o The curvature: Kk = HT|| = || X]|
o The torsion: 7 = (—N, B)

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 10



Ditrerential Geometry —

‘ j Computer Graphics
\ * and HCI Group

AG Computergrafik und HCI C u rve T h eory

Arc Length Parameterization

Exercise
Provide a parameterization by the arc length for the following
parameterized curve:

x: [0,1] — R* with x(t) = (e cos(t), " sin(t), et)T where t € [0, 1]
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Arc Length Parameterization

Solution

First, the tangent vector:

x = (efcost — efsint,etsint+ et cost,et)’
Now we compute the arc length:

t t
/HXHdt:/ Vxdt
0 0

t
:/ \/Qezt(cos2 tsin? t) + e2tdt
0
t t
:/ V3eldt = V/3et — V3(et — 1)
0

So, the arc length is s(t) = v/3(ef — 1) for t € [0, 1].
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Arc Length Parameterization
Solution

So, the arc length is s(t) = v/3(et — 1) for t € [0, 1].
We now compute the borders s(0) = 0 and s(1) = v/3(e — 1) for
the inverse of s(t):

s(t):\@(et—l)@tzln<5(\/t§)+l> Mt(s):|n(\;§—|—l)

Reparameterizing the original representation, we obtain:
S

. (cosln (\ﬁ—kl)\ 7

x(s)=—4=+1]- : s 0<s<vVv3e—1

(s) (\@ ) \smln(\@—kl)) ( )
1
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Frenet Frame, Curvature, and Torsion
Frenet Frame:

@ Tangent vector T (blue): direction of the curve

@ Principal normal vector N (red): points to the center of the
osculating circle

@ Binormal vector B (purple): [T, N]

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 14



Ditrerential Geometry —

‘l ! Computer Graphics
=" and HCI Group

AG Computergrafik und HCI C u rve T h eory

Frenet Frame, Curvature, and Torsion

Frenet Equations, Curvature and Torsion:
If a curve parameterized by the arc length is given, we can compute
the vectors of the frenet frame, the curvature and the torsion as
follows:

o The Frenet frame: with || X|| =1 and || X|| # 0:

e Tangent vector: T =X
5

e Principal normal vector: N = Al

o Binormal vector: B = [T, N]|
o The curvature: k= || T|| = || X|
o The torsion: 7 = (—N, B)
More general equations are provided in the lecture slides.
Note that the principal normal vector and the binormal vector are

not defined for curves that are not at least C2! For curves that are
not C2, the torion is 0, i.e. they are planar.

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 15



Ditrerential Geometry —

‘l ! Computer Graphics
=" and HCI Group

AG Computergrafik und HCI C u rve T h eory

Frenet Frame, Curvature, and Torsion

Intuition Behind Curvature and Torsion:
The curvature and torsion answer questions about the bending and
the twisting behavior of a curve:

@ curvature: How much does the curve deviate from a straight
line?
@ torsion: How much does the curve deviate from planar shape?

If the curvature is 0, the curve is a straight line. If the torsion is 0,
the curve can be embedded in a plane.
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Frenet Frame, Curvature, and Torsion

Connection Between Frenet Frame, Curvature and Torsion:
When the Frenet frame is moved along the curve, the curvature is
the frame’'s rotation around the binormal. The torsion is the

rotation around the tangent.

5
,/)T\

For example in a helix, the principal normal always points to the
central axis (1) and is always orthogonal to it (2). Thus, if the
frame moves along the helix, it has to rotate around the binormal
to fulfill (1) and around the tangent to fulfill (2), thereby showing

curvature and torsion.

Benjamin Karer M.Sc. Geometric Modelling Summer 2018

17



Ditrerential Geometry —

‘ j Computer Graphics
\ * and HCI Group

AG Computergrafik und HCI C u rve T h eory

Frenet Frame, Curvature, and Torsion

Exercise
Determine all arc length parameterized C3-curves in E3 with
constant curvature and torsion.
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Frenet Frame, Curvature, and Torsion

Solution
Determine all arc length parameterized C3-curves in E3 with
constant curvature and torsion.

k=01 k=const >0
7T=20 lines circles
7 =const > 0 — helices

There is no object with vanishing curvature and nonzero torsion.

In fact, whenever the curvature vanishes, the torsion also does!
Question: Why?
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Frenet Frame, Curvature, and Torsion

Solution
Whenever the curvature vanishes, the torsion also does!
Why?
— Recall the formulas:
k=|T]|
T =(—N, B>
_ X d[T, M,
IX||”  dt
( T d[T, N]>
IT| dt

If the curvature vanishes, || T|| = 0. Therefore, T has to be a
0-vector and the torsion also vanishes.
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Frenet Frame, Curvature, and Torsion

Exercise
For the following curves, decide for the curvature and the torsion
whether they vanish, are constant, or vary:

<)

® v 0

*)

/

~ B ¥
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To Establish

Solution

variable curvature, zero torsion

j¢3)

(o

piecewise constant (but sign flipping) curvature, zero torsion

O

constant nonzero curvature, zero torsion
variable curvature and variable torsion

constant nonzero curvature and constant nonzero torsion

¢

(@
~— e e e’ N N

variable curvature, constant nonzero torsion
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