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Course Progess

Analytic Geometry

Projective Geometry

Affine Geometry,
Hyperbolic/Elliptic
Geometry

Erlangen Program

Vector Calculus

Differential Geometry

v

Clifford Algebra

Applications:

* Offset Curves/Surfaces
* Interpolating Triangle Patches
* Variational Design
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First Fundamental Form

Tangent Space

@ generalization of vectors from affine spaces to general
manifolds

@ intuition: The space of all possible directions of a tangent
through a point x on the surface

@ example: Sphere: for every point, the plane perpendicular to
the radius through x

@ tangent spaces — define a vector field that smoothly assigns
to every point x a vector from x’s tangent space

@ analogue: think of these vectors as velocities of a particle
along a curve on the manifold

M
\ v/x
VM
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First Fundamental Form
Tangent Space

@ special case: surface X = X(u,v) — X, = %—)5, Xy = %—)V(

@ in general: tangent space in point X(u, v) is the plane
spanned by X, and X, (exceptions: peak, ridge, ...)
o Gauss frame: analogue to Frenet frame: {X,, X,, N} where

_ [XLHXV]
X X

@ note: X, and X, do not need to be orthogonal, thus the Gauss
frame is in general not orthonormal!

unit normal vector N

Xq

X2
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First Fundamental Form

First Fundamental Form
@ inner product on tangent space, induced from scalar product
@ completely describes the metric properties of a surface — can
be used to compute lengths and areas on the surface

Definition: First Fundamental Form

Let X(u,v) be a parametric surface. Then, the inner product of
two tangent vectors in tangent space is given by:

I(x,y) = (x,y)
I(x. T 811 g12>
b6 y) <g21 822 Y

where gjj = (X;, X;) for i,j € (1,2), corresponding to the first resp.
second parameter u, resp. v. Note: gio = go1.
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First Fundamental Form

Exercise:
Compute / for the unit sphere.
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First Fundamental Form

Exercise:
Compute / for the unit sphere.

COS U Ssin v
Solution: Unit sphere: X(u,v) = | sinusinv |, where
CoSs v
(u,v) €[0,27) = x[0, 7).
—sinusin v COS U COS V
X,=| cosusinv |,and X, = | sinucosv
0 —sinv

Coeffeicients gjj = (X;, X;) for i,j € (1,2):
811 — sinv, g2 = g1 =20, and g»n =1
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First Fundamental Form

First Fundamental Form
Line element:

ds® = gi11du® — 2g1adu dv + grodv?

Surface element: Using Lagrange's identity
|al|2- [|b]|% = (a, b)2 = Zl§i<j§n(a,-bj—ajb;)2' one obtains:

dA = [[[Xa, X llldu dv = /g1 - g22 — gBdu dv
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First Fundamental Form

Exercise:
Compute the length of the equator and the area of the overall
surface of the sphere.

Solution: Equator: coefficients of I: g1 = sin’v, gio = go1 = 0,
and 822 — 1
Unit Sphere Equator — dv = 0.

ds® = \/sin2 v du?

27
s = / sin vdu = 27
0
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First Fundamental Form

Exercise:
Compute the length of the equator and the area of the overall
surface of the sphere.

Solution: Surface Area: coefficients of I: gi1 = sin’v,

g2 =21 =0, and gor =1

11X X, dudv = /g1 - 820 — gy du dv

= Vsin?v -1 — 0vdu

2T T 2T
A= / / sin vv! u:/ 2w sin vy = 47
0 0 0

Note: This is the omputation for the unit sphere. For the general
sphere, we obtain 47r? for radius r

dA
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Second Fundamental Form

Curvatures:

@ remember from last time: for a particle moving along a curve
ignorant of the "surroundings", all curves look the same —
curves do not have a curvature unless embedded in some space
—» curvature is an extrinsic property for curves

@ for planes, this is not true. They can have intrinsic curvature,
independent of an embedding — Gaussian curvature

@ In the following: repetition of concepts from the lecture
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Second Fundamental Form

Curvatures: Curves on Surfaces:
o setting: 1d curve C on 2d surface X embedded in R3

@ if the curve is non-singular its tangent vector lies in the plane’s
tangent space

e normal curvature: k, curvature of the curve projected onto
the plane spanned by C and surface normal vector N

e geodesic curvature: kg curvature of the curve projected onto
the surface’s tangent plane

e geodesic torsion: 7, measures the rate of change of the
surface normal N around the curve's tangent C
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Second Fundamental Form
Curvatures: Curves on Surfaces:

@ all curves with same tangent vector have the same normal
curvature = the curvature obtained by intersecting the surface
with the plane spanned by C and N

e principal curvatures: k; and k> are the maximum and
minum values of the normal curvature at a point

e principal directions: the directions of the tangent vectors
corresponding to ki and ky

@ this is equivalent to the definition via an eigenproblem given in
the lecture
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Second Fundamental Form
Curvatures: Gaussian Curvature:

K = ki - ko

@ positive for spheres, negative for hyperboloids, zero for planes

@ determines whether a surface is locally convex (= locally
spherical) or locally saddle (= locally hyperbolic)

@ this definition is extrinsic as it uses an embedding of the
surface in R3 (same setting as on the slide before)

@ Gauss' Theorema Egregium: Gaussian curvature depends only
on the first fundamental form

@ Alternative formulation: Gaussian curvature can be determined
entirely by measuring angles, distances, and their rates directly
on the surface without concern for any possible embidding in
R3 — Gaussian curvature is an intrinsic invariant of a surface
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Second Fundamental Form
Curvatures: Mean Curvature:

ki + ko
2

H =

@ interesting for the analysis of minimal surfaces (zero mean
curvature) and for the analysis of physical interfaces between
fluids

@ examples:

e soap film: mean curvature zero
e soap bubble: constant mean curvature

@ in contrast to Gaussian curvature, H is an extrinsic property.
Example:

Plane and Cylinder are locally isometric but the plane has zero
mean curvature whereas the cylinder does not

Benjamin Karer M.Sc. Geometric Modelling Summer 2018 16



Ditrerential Geometry —

‘ j Computer Graphics
\ * and HCI Group

A6 Computrgfiund HC Surface Theory and Manifolds

Second Fundamental Form

Second Fundamental Form:

Shape Operator: L, : TuX = TuX: Ly,=—dN,o X!
u(x,y) = (Lu(a), b), a,be T,X

Matrices:

Shape Operator: hj’: — jkgki
I, hij = —(Xi, N;) = +(Xjj, N)
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Second Fundamental Form

Second Fundamental Form:

@ basically, /I is the normal curvature to a curve tangent to a
surface X

@ encodes extrinsic as well as intrinsic curvatures

@ the shape operator has two real-valued eigenvalues: the
principal curvatures

@ the determinant of the matrix for // describes how the survace
bends at a certain point similarly to the Gaussian curvature:
o hi1hay — h7, > 0: elliptical (e.g. ellipsoid, sphere)
o hi1hyy — hi, = 0: parabolic (e.g. cylinder)
o hi1hay — h7, < 0: hyperbolic (e.g. hyperboloid)
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Second Fundamental Form

Exercise:
Compute /I for a sphere.
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Second Fundamental Form

Exercise:
Compute /| for a sphere of radius r > 1.

Solution: |
r Cos usin v
Sphere of radius r > 0: X(u,v) = | rsinusinv |. Field of unit
r CoS v
normals: v(u,v) = 1 X(u,v)
Second partial derivatives of X:
—rcos usinv —rsin ucos v
Xyu=1 rsinusinv |, X,, =X, = | rcosucosv |, and
0 0
Xy = —X
Coefficients: h11 = —r sin2 v, h12 = h21 = O, and h22 = —r
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@ Generelization of the notion of a "straight line" to "curved
spaces"

@ defined as a curve whose tangent vectors remain parallel if
transported along an affine connection

@ in case of the Levi-Civita connection, geodesics are locally
shortest paths between points in the space

@ examples: lines in the plane, great circles on a sphere, triaxial
ellipsoid: see image below
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Geodesics

@ shortest path between to points: write the equation for the
length of a connecting curve and minimize it using variational
calculus

@ problem: possibly infinitely many ways to parameterize the
shortest path

@ idea: demand the curve to minimize the length and
additionally be paremeterized with "constant velocity" —
distance of points C(t;) and C(tz) on curve C(t) is
proportional to |to — ti]

@ equivalently: Energy. elastic band stretched between two
points contracts its length minimizing its energy — if this
contraction is resptricted to the shape of the space (i.e. the
band e.g. "stays in the plane"), the result is a geodesic

@ note: Geodesics are similar to but not equal to shortest paths.
Exercise: find a counterexample
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Geodesics

Exercise:
Find a counterexample proving that geodesics are not the same as

shortest distances.

Solution:
On a sphere, a geodesic is a great circle. Taking the "long way"
from one point to another is also a geodesic but obviously not the

shortest distance.
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