Computer Graphics
and HCI Group
AG Computergrafik und HCI

Geometric Modelling Summer 2018
 - Exercises -

Benjamin Karer M.Sc.

http://hci.uni-kl.de/teaching/geometric-modelling-ss2018

Differential Geometry -

Surface Theory and Manifolds

Differential Geometry Surface Theory and Manifolds

Differential Geometry -

Surface Theory and Manifolds

Course Progess

Surface Theory and Manifolds

First Fundamental Form

Tangent Space

- generalization of vectors from affine spaces to general manifolds
- intuition: The space of all possible directions of a tangent through a point x on the surface
- example: Sphere: for every point, the plane perpendicular to the radius through x
- tangent spaces \rightarrow define a vector field that smoothly assigns to every point x a vector from x 's tangent space
- analogue: think of these vectors as velocities of a particle along a curve on the manifold

Surface Theory and Manifolds

First Fundamental Form

Tangent Space

- special case: surface $X=X(u, v) \rightarrow X_{u}=\frac{\partial X}{\partial u}, X_{v}=\frac{\partial X}{\partial v}$
- in general: tangent space in point $X(u, v)$ is the plane spanned by X_{u} and X_{v} (exceptions: peak, ridge, ...)
- Gauss frame: analogue to Frenet frame: $\left\{X_{u}, X_{v}, N\right\}$ where unit normal vector $N=\frac{\left[X_{u}, X_{U}\right]}{\left\|\left[X_{u}, X_{V}\right]\right\|}$
- note: X_{u} and X_{V} do not need to be orthogonal, thus the Gauss frame is in general not orthonormal!

Surface Theory and Manifolds

First Fundamental Form

First Fundamental Form

- inner product on tangent space, induced from scalar product
- completely describes the metric properties of a surface \rightarrow can be used to compute lengths and areas on the surface

Definition: First Fundamental Form

Let $X(u, v)$ be a parametric surface. Then, the inner product of two tangent vectors in tangent space is given by:

$$
\begin{aligned}
& I(x, y)=\langle x, y\rangle \\
& I(x, y)=x^{T}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) y
\end{aligned}
$$

where $g_{i j}=\left\langle X_{i}, X_{j}\right\rangle$ for $i, j \in\langle 1,2\rangle$, corresponding to the first resp. second parameter u, resp. v. Note: $g_{12}=g_{21}$.

Differential Geometry -

Surface Theory and Manifolds

First Fundamental Form

Exercise:

Compute I for the unit sphere.

Surface Theory and Manifolds

First Fundamental Form

Exercise:

Compute I for the unit sphere.
Solution: Unit sphere: $X(u, v)=\left(\begin{array}{c}\cos u \sin v \\ \sin u \sin v \\ \cos v\end{array}\right)$, where
$(u, v) \in[0,2 \pi)=\times[0, \pi)$.
$X_{u}=\left(\begin{array}{c}-\sin u \sin v \\ \cos u \sin v \\ 0\end{array}\right)$, and $X_{v}=\left(\begin{array}{c}\cos u \cos v \\ \sin u \cos v \\ -\sin v\end{array}\right)$
Coeffeicients $g_{i j}=\left\langle X_{i}, X_{j}\right\rangle$ for $i, j \in\langle 1,2\rangle$:
$g_{11}=\sin ^{2} v, g_{12}=g_{21}=0$, and $g_{22}=1$

Surface Theory and Manifolds

First Fundamental Form

First Fundamental Form

Line element:

$$
d s^{2}=g_{11} d u^{2}-2 g_{12} d u d v+g_{22} d v^{2}
$$

Surface element: Using Lagrange's identity

$$
\|a\|^{2} \cdot\|b\|^{2}-\langle a, b\rangle^{2}=\sum_{1 \leq i<j \leq n\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2},} \text {, one obtains: }
$$

$$
d A=\left\|\left[X_{u}, X_{v}\right]\right\| d u d v=\sqrt{g_{11} \cdot g_{22}-g_{12}^{2}} d u d v
$$

Surface Theory and Manifolds

First Fundamental Form

Exercise:

Compute the length of the equator and the area of the overall surface of the sphere.

Solution: Equator: coefficients of $I: g_{11}=\sin ^{2} v, g_{12}=g_{21}=0$, and $g_{22}=1$
Unit Sphere Equator $\rightarrow d v=0$.

$$
\begin{aligned}
d s^{2} & = \\
s= & \sqrt{\sin ^{2} v d u^{2}} \\
s & \int_{0}^{2 \pi} \sin v d u=2 \pi
\end{aligned}
$$

Surface Theory and Manifolds

First Fundamental Form

Exercise:

Compute the length of the equator and the area of the overall surface of the sphere.

Solution: Surface Area: coefficients of $I: g_{11}=\sin ^{2} v$, $g_{12}=g_{21}=0$, and $g_{22}=1$

$$
\begin{aligned}
d A & = & & \left\|\left[X_{u}, X_{v}\right]\right\| d u d v=\sqrt{g_{11} \cdot g_{22}-g_{12}^{2}} d u d v \\
& = & & \sqrt{\sin ^{2} v \cdot 1-0 v d u} \\
A & = & & \int_{0}^{2 \pi} \int_{0}^{\pi} \sin v v!u=\int_{0}^{2 \pi} 2 \pi \sin v v=4 \pi
\end{aligned}
$$

Note: This is the omputation for the unit sphere. For the general sphere, we obtain $4 \pi r^{2}$ for radius r

Surface Theory and Manifolds

Second Fundamental Form

Curvatures:

- remember from last time: for a particle moving along a curve ignorant of the "surroundings", all curves look the same \rightarrow curves do not have a curvature unless embedded in some space \rightarrow curvature is an extrinsic property for curves
- for planes, this is not true. They can have intrinsic curvature, independent of an embedding \rightarrow Gaussian curvature
- In the following: repetition of concepts from the lecture

Surface Theory and Manifolds

Second Fundamental Form

Curvatures: Curves on Surfaces:

- setting: 1d curve C on 2 d surface X embedded in \mathbb{R}^{3}
- if the curve is non-singular its tangent vector lies in the plane's tangent space
- normal curvature: k_{n} curvature of the curve projected onto the plane spanned by \dot{C} and surface normal vector N
- geodesic curvature: k_{g} curvature of the curve projected onto the surface's tangent plane
- geodesic torsion: τ_{r} measures the rate of change of the surface normal N around the curve's tangent \dot{C}

Surface Theory and Manifolds

Second Fundamental Form

Curvatures: Curves on Surfaces:

- all curves with same tangent vector have the same normal curvature $=$ the curvature obtained by intersecting the surface with the plane spanned by \dot{C} and N
- principal curvatures: k_{1} and k_{2} are the maximum and minum values of the normal curvature at a point
- principal directions: the directions of the tangent vectors corresponding to k_{1} and k_{2}
- this is equivalent to the definition via an eigenproblem given in the lecture

Surface Theory and Manifolds

Second Fundamental Form

Curvatures: Gaussian Curvature:

$$
K=k_{1} \cdot k_{2}
$$

- positive for spheres, negative for hyperboloids, zero for planes
- determines whether a surface is locally convex (= locally spherical) or locally saddle (= locally hyperbolic)
- this definition is extrinsic as it uses an embedding of the surface in \mathbb{R}^{3} (same setting as on the slide before)
- Gauss' Theorema Egregium: Gaussian curvature depends only on the first fundamental form
- Alternative formulation: Gaussian curvature can be determined entirely by measuring angles, distances, and their rates directly on the surface without concern for any possible embidding in $\mathbb{R}^{3} \rightarrow$ Gaussian curvature is an intrinsic invariant of a surface

Surface Theory and Manifolds

Second Fundamental Form

Curvatures: Mean Curvature:

$$
H=\frac{k_{1}+k_{2}}{2}
$$

- interesting for the analysis of minimal surfaces (zero mean curvature) and for the analysis of physical interfaces between fluids
- examples:
- soap film: mean curvature zero
- soap bubble: constant mean curvature
- in contrast to Gaussian curvature, H is an extrinsic property. Example:
Plane and Cylinder are locally isometric but the plane has zero mean curvature whereas the cylinder does not

Surface Theory and Manifolds

Second Fundamental Form

Second Fundamental Form:

$$
\begin{aligned}
& \text { Shape Operator: } L_{u}: T_{u} X \rightarrow T_{u} X: \quad L_{u}=-d N_{u} \circ X_{u}^{-1} \\
& \Pi_{u}(x, y)=\left\langle L_{u}(a), b\right\rangle, \quad a, b \in T_{u} X
\end{aligned}
$$

Matrices:

$$
\begin{aligned}
& \text { Shape Operator: } h_{j}^{i}=h_{j k} g^{k i} \\
& I_{u} h_{i j}=-\left\langle X_{i}, N_{j}\right\rangle=+\left\langle X_{i j}, N\right\rangle
\end{aligned}
$$

Surface Theory and Manifolds

Second Fundamental Form

Second Fundamental Form:

- basically, I/ is the normal curvature to a curve tangent to a surface X
- encodes extrinsic as well as intrinsic curvatures
- the shape operator has two real-valued eigenvalues: the principal curvatures
- the determinant of the matrix for I/ describes how the survace bends at a certain point similarly to the Gaussian curvature:
- $h_{11} h_{22}-h_{12}^{2}>0$: elliptical (e.g. ellipsoid, sphere)
- $h_{11} h_{22}-h_{12}^{2}=0$: parabolic (e.g. cylinder)
- $h_{11} h_{22}-h_{12}^{2}<0$: hyperbolic (e.g. hyperboloid)

Differential Geometry -

Surface Theory and Manifolds

Second Fundamental Form

Exercise:

Compute I/ for a sphere.

Surface Theory and Manifolds

Second Fundamental Form

Exercise:

Compute I/ for a sphere of radius $r>1$.

Solution:

Sphere of radius $r>0: X(u, v)=\left(\begin{array}{c}r \cos u \sin v \\ r \sin u \sin v \\ r \cos v\end{array}\right)$. Field of unit
normals: $\nu(u, v)=\frac{1}{r} X(u, v)$
Second partial derivatives of X :
$X_{u u}=\left(\begin{array}{c}-r \cos u \sin v \\ r \sin u \sin v \\ 0\end{array}\right), X_{u v}=X_{v u}=\left(\begin{array}{c}-r \sin u \cos v \\ r \cos u \cos v \\ 0\end{array}\right)$, and
$X_{v v}=-X$
Coefficients: $h_{11}=-r \sin ^{2} v, h_{12}=h_{21}=0$, and $h_{22}=-r$

AG Computergrafik und HCI

Surface Theory and Manifolds

Geodesics

- Generelization of the notion of a "straight line" to "curved spaces"
- defined as a curve whose tangent vectors remain parallel if transported along an affine connection
- in case of the Levi-Civita connection, geodesics are locally shortest paths between points in the space
- examples: lines in the plane, great circles on a sphere, triaxial ellipsoid: see image below

Surface Theory and Manifolds

Geodesics

- shortest path between to points: write the equation for the length of a connecting curve and minimize it using variational calculus
- problem: possibly infinitely many ways to parameterize the shortest path
- idea: demand the curve to minimize the length and additionally be paremeterized with "constant velocity" \rightarrow distance of points $C\left(t_{1}\right)$ and $C\left(t_{2}\right)$ on curve $C(t)$ is proportional to $\left|t_{2}-t_{1}\right|$
- equivalently: Energy: elastic band stretched between two points contracts its length minimizing its energy \rightarrow if this contraction is resptricted to the shape of the space (i.e. the band e.g. "stays in the plane"), the result is a geodesic
- note: Geodesics are similar to but not equal to shortest paths. Exercise: find a counterexamole

Surface Theory and Manifolds

Geodesics

Exercise:

Find a counterexample proving that geodesics are not the same as shortest distances.

Solution:

On a sphere, a geodesic is a great circle. Taking the "long way" from one point to another is also a geodesic but obviously not the shortest distance.

