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Introduction

People

Lecture: Prof. Dr. Hans Hagen,

36-226
hagen@informatik.uni-kl.de

Responsible for exams: Prof. Dr. Hans Hagen

Exercises: Benjamin Karer M.Sc., karer@rhrk.uni-kl.de

36-415
karer@rhrk.uni-kl.de
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Introduction

Lecture and Exercise

Room: 36-265

Wednesday, 10:00-11:30 and Friday, 11:45-13:15

Demonstration of practical exercises in the lab (36-223)

See homepage for news and changes
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Introduction

Exercise

Exercise sheets will be uploaded on the homepage

Deadlines:

Theoretical exercises: lecture on Wednesdays
Practical exercises: demonstration in the lab (36-223) until
end of semester

requirements for the exam: reasonable attempt to 100% of the

exercises + summary and short talk for research paper

registration: list here and via email to karer@rhrk.uni-kl.de
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Introduction

Paper Summary and Talk

1 paper (approx. 12 pages) each

made available at about half of the lecture

summary:
roughly 2 pages, including images
short, high-level summary of the paper's motivation, solution,
and proclaimed results
focus on your own discussion of the paper:

is the motivation su�cient?

are the design decisions sound and well motivated?

are the conclusions justi�ed by the results?

paper talk:
at the end of the semester
12 minutes, max. 15
even more high level description and discussion
after each talk, approx. 5 minutes of scienti�c discussion
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Introduction

Contents

Interpolation

Spline Curves

Bézier Curves

B-Spline Curves

Gordon-Coons Patches

Bézier and B-Spline Surfaces

Curve and Surface Subdivision?
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Introduction

Literature

G. Farin, Curves and Surfaces for CAGD, Academic Press,

1992.

J. Hoschek, D.Lasser, Fundamentals of CAGD, A K Peters,

Ltd. 1993.

G. Farin, NURBS for Curve and Surface Design from

Projective Geometry, 2nd edition, A K peters, Ltd. 1999.
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Motivation
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Motivation

Motivation

Figure: Segments of composite surfaces
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Motivation

Motivation

Figure: Interpolation
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Motivation

Motivation

Figure: Interpolation (not shape preserving)
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Motivation

Motivation

Figure: Piecewise smooth surface construction.
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Motivation

Motivation

Figure: Multiple solutions to the same interpolation problem
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Basics of Analytic Geometry

Basics of Analytic Geometry
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Basics of Analytic Geometry

Vectors

fundamental idea of analytic geometry: �calculate� geometric

�facts�

key technology: Vectors (with scalar and cross product)

Vector: ordered pair of points: from P to Q:
−→a = (a1, a2, a3)T = (q1 − p1, q2 − p2, q3 − p3)T

Two vectors are equal if they are equal in direction and length

Vectors build an algebraic group (V ,+) (they can be added)

A vector space (F ,+, ·) over a �eld F is a set (V ,+) together

with a scalar multiplication of elements from V (vectors) with

elements from F (scalars)
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Basics of Analytic Geometry

Applications: Line
1. explicit vector form

−→r = −→a + t ·
−→
b

Figure: Line

2. parametric two point form

−→r = −→a + t ·
(−→
b −−→a

)
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Basics of Analytic Geometry

Application: Plane
1. explicit point-vector form

−→r = −→a + t ·
−→
b + τ · −→c

Figure: Plane

2. parametric three point form

−→r = −→a + t ·
(−→
b −−→a

)
+ τ ·

(−→c −−→a )
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Basics of Analytic Geometry

Linear Dependence

De�nition

n vectors −→a1 , . . . ,−→an are linearly dependent, if there are n scalars

α1, . . . , αn which are not all zero, such that α1
−→a1 + . . .+αn

−→an = 0.

These vectors are called linearly independent, if there are no such

scalars.

Fact

A pair of linearly dependent vectors is always parallel.

More than n vectors in a n-dimensional space are always linearly

dependent.
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Basics of Analytic Geometry

Scalar Product

De�nition

〈, 〉 : V × V → R

〈−→a ,−→b 〉 := a1b1 + . . .+ anbn

The scalar product of two vectors is the multiplication of the length

of one vector times the length of the projection of the other vector

onto this vector.
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Basics of Analytic Geometry

Scalar Product - Properties

1

∥∥−→a ∥∥ :=
√〈−→a ,−→a 〉 de�nes a norm ‖ ‖ : V −→ R+

0
.

2

〈−→a ,−→b 〉 =
∥∥−→a ∥∥ · ∥∥∥−→b ∥∥∥ · cosΦ.

3

〈−→a ,−→b 〉 = 0⇔ −→a ⊥
−→
b
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Basics of Analytic Geometry

Vector- / Cross-Product

De�nition

[, ] : V × V → V ; V ∼= R3[
~a, ~b
]

:=

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ; {e1, e2, e3} basis of R3

[, ] : V × V → V is a bilinear, anti-symmetric vector
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Basics of Analytic Geometry

Volume Product

De�nition〈[
~a, ~b
]
, ~c
〉
is the oriented volume spanned by ~a, ~b, ~c .

Figure: volume de�ned by vectors −→a ,
−→
b , and −→c
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Basics of Analytic Geometry

Properties

1

[
~a, ~b
]

= 0⇔ ~a, ~b are linearly dependent.

2

[
~a, ~b
]
is orthogonal to ~a and ~b;

{
~a, ~b,

[
~a, ~b
]}

is a right hand

system.

3

∥∥∥[~a, ~b]∥∥∥ = ‖~a‖ ·
∥∥∥~b∥∥∥ · sinΦ =

√(
‖~a‖2 ·

∥∥∥~b∥∥∥2 − 〈~a, ~b〉2).
4

〈
~c ,
[
~a, ~b
]〉

= det
(
~c, ~a, ~b

)
=
∣∣∣~c, ~a, ~b∣∣∣.

5

〈[
~a, ~b
]
,
[
~c , ~d

]〉
= 〈~a, ~c〉 ·

〈
~b, ~d

〉
−
〈
~a, ~d
〉
·
〈
~b, ~c
〉
.

6

[
~a,
[
~b, ~c
]]

= 〈~a, ~c〉 · ~b −
〈
~a, ~b
〉
· ~c .

7

[[
~a, ~b
]
,
[
~c , ~d

]]
= det

(
~a, ~b, ~d

)
· ~c − det

(
~a, ~b,~c

)
· ~d .
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Basics of Analytic Geometry

Calculations with 3-dimensional Column-Vectors

Addition

~a + ~b :=

a1 + b1
a2 + b2
a3 + b3


Scalar Multiplication

λ · ~a =

λ · a1λ · a2
λ · a3


Scalar Product〈
~a, ~b
〉

= a1 · b1 + a2 · b2 + a3 · b3
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Basics of Analytic Geometry

Calculations with 3-dimensional Column-Vectors

Vector Product[
~a, ~b
]

= det

e1 e2 e3
a1 a2 a3
b1 b2 b3


Volume Product〈[
~a, ~b
]
, ~c
〉

= det

 c1 c2 c3
a1 a2 a3
b1 b2 b3
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Basics of Analytic Geometry

Applications - Hesse form

De�nition

P1,P2,P3: Points on a plane

HF := [(P2−P1),(P3−P1)]
‖[(P2−P1),(P3−P1)]‖ → 〈(~r − P1) ,HF 〉 = 0
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Basics of Analytic Geometry

Distances

〈(~a− P1) ,HF 〉 is the distance of a point to the plane.

Distance of point P to straight line r = ~a + t · ~b: ‖[(~p−~a),
~b]‖

‖~b‖

Figure: Distance point-to-line: 1

2
d‖~b‖ = 1

2
‖[~p − ~a, ~b]‖

The non-intersecting straight lines ~r = ~a1 + t · ~b1 and
~s = ~a2 + τ · ~b2 have the distance:

d =
〈( ~a1− ~a2),[ ~b1, ~b2]〉
‖[ ~b1, ~b2]‖ , if det

(
~a1 − ~a2, ~b1, ~b2

)
6= 0
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Basics of Analytic Geometry

Distances

Locations of the points of shortest distance

τ0 =
det(( ~a1− ~a2), ~b1,[ ~b1, ~b2])
〈[ ~b1, ~b2],[ ~b1, ~b2]〉

t0 =
det(( ~a2− ~a1), ~b2,[ ~b1, ~b2])
〈[ ~b1, ~b2],[ ~b1, ~b2]〉
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