

Algorithmic Geometry WS 2017/2018

Prof. Dr. Hans Hagen Benjamin Karer M.Sc.

http://gfx.uni-kl.de/~alggeom

Algorithmic Geometry WS 2017/2018

Prof. Dr. Hans Hagen Benjamin Karer M.Sc.

http://gfx.uni-kl.de/~alggeom

Introduction

- Lecture: Prof. Dr. Hans Hagen,
 - 36-226
 - hagen@informatik.uni-kl.de
- Responsible for exams: Prof. Dr. Hans Hagen
- Exercises: Benjamin Karer M.Sc., karer@rhrk.uni-kl.de
 - 36-415
 - karer@rhrk.uni-kl.de

Lecture and Exercise

- Room: 36-265
- Wednesday, 10:00-11:30 and Friday, 11:45-13:15
- Demonstration of practical exercises in the lab (36-223)
- See homepage for news and changes

- Exercise sheets will be uploaded on the homepage
- Deadlines:
 - Theoretical exercises: lecture on Wednesdays
 - Practical exercises: demonstration in the lab (36-223) until end of semester
- requirements for the exam: reasonable attempt to 100% of the exercises + summary and short talk for research paper
- registration: list here and via email to karer@rhrk.uni-kl.de

Paper Summary and Talk

- 1 paper (approx. 12 pages) each
- made available at about half of the lecture
- summary:
 - roughly 2 pages, *including* images
 - short, high-level summary of the paper's motivation, solution, and proclaimed results
 - focus on your own discussion of the paper:
 - is the motivation sufficient?
 - are the design decisions sound and well motivated?
 - are the conclusions justified by the results?
- paper talk:
 - at the end of the semester
 - 12 minutes, max. 15
 - even more high level description and discussion
 - after each talk, approx. 5 minutes of scientific discussion

Contents

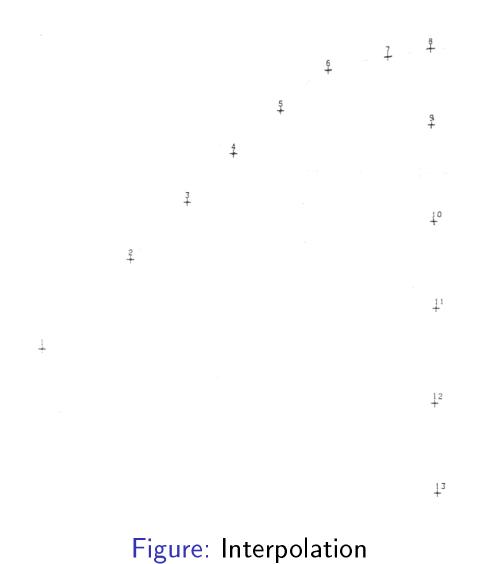
- Interpolation
- Spline Curves
- Bézier Curves
- B-Spline Curves
- Gordon-Coons Patches
- Bézier and B-Spline Surfaces
- Curve and Surface Subdivision?

- G. Farin, **Curves and Surfaces for CAGD**, Academic Press, 1992.
- J. Hoschek, D.Lasser, **Fundamentals of CAGD**, A K Peters, Ltd. 1993.
- G. Farin, NURBS for Curve and Surface Design from Projective Geometry, 2nd edition, A K peters, Ltd. 1999.

Algorithmic Geometry WS 2017/2018



Figure: Segments of composite surfaces



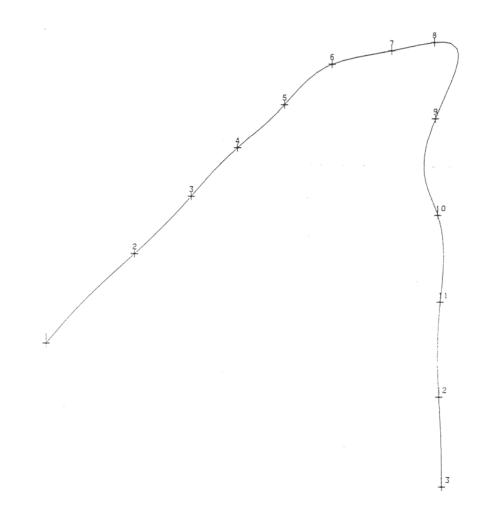


Figure: Interpolation (not shape preserving)

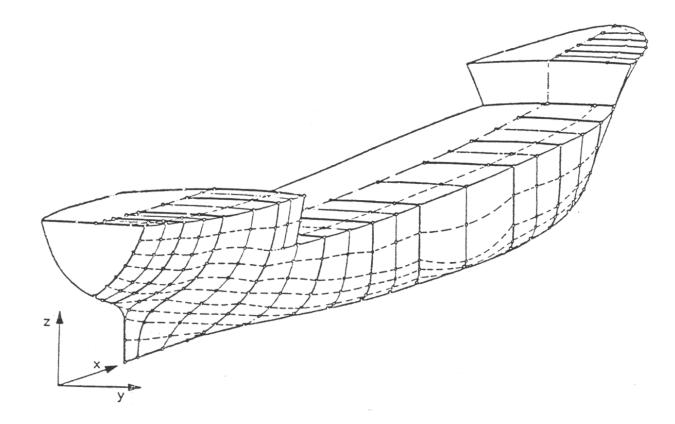


Figure: Piecewise smooth surface construction.

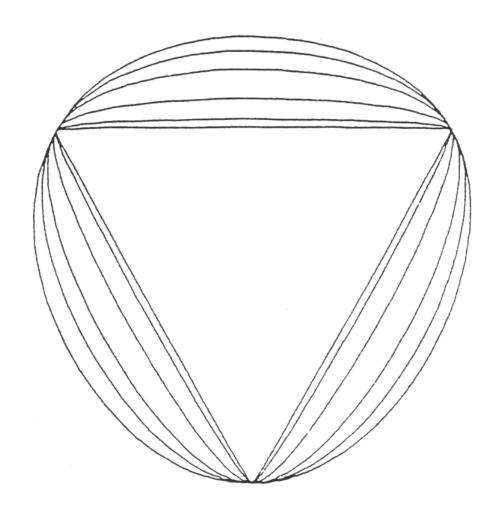


Figure: Multiple solutions to the same interpolation problem

Vectors

- fundamental idea of analytic geometry: "calculate" geometric "facts"
- key technology: Vectors (with scalar and cross product)
- Vector: ordered pair of points: from P to Q: $\overrightarrow{a} = (a_1, a_2, a_3)^T = (q_1 - p_1, q_2 - p_2, q_3 - p_3)^T$
- Two vectors are equal if they are equal in direction and length
- Vectors build an algebraic group (V, +) (they can be added)
- A vector space (F, +, ·) over a field F is a set (V, +) together with a scalar multiplication of elements from V (vectors) with elements from F (scalars)

Applications: Line

1. explicit vector form



2. parametric two point form

$$\overrightarrow{r} = \overrightarrow{a} + t \cdot \left(\overrightarrow{b} - \overrightarrow{a}\right)$$

Application: Plane

1. explicit point-vector form

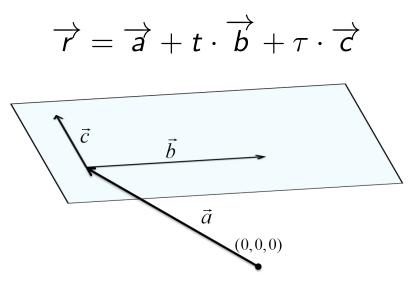


Figure: Plane

2. parametric three point form

$$\overrightarrow{r} = \overrightarrow{a} + t \cdot \left(\overrightarrow{b} - \overrightarrow{a}\right) + \tau \cdot \left(\overrightarrow{c} - \overrightarrow{a}\right)$$

Linear Dependence

Definition

n vectors $\overrightarrow{a_1}, \ldots, \overrightarrow{a_n}$ are *linearly dependent*, if there are *n* scalars $\alpha_1, \ldots, \alpha_n$ which are not all zero, such that $\alpha_1 \overrightarrow{a_1} + \ldots + \alpha_n \overrightarrow{a_n} = 0$.

These vectors are called *linearly independent*, if there are no such scalars.

Fact

A pair of linearly dependent vectors is always parallel. More than n vectors in a n-dimensional space are always linearly dependent.

Scalar Product

Definition

$$\langle,\rangle:V imes V o\mathbb{R}$$

$$\left\langle \overrightarrow{a}, \overrightarrow{b} \right\rangle := a_1 b_1 + \ldots + a_n b_n$$

The scalar product of two vectors is the multiplication of the length of one vector times the length of the projection of the other vector onto this vector.

Scalar Product - Properties

1
$$\|\vec{a}\| := \sqrt{\langle \vec{a}, \vec{a} \rangle}$$
 defines a norm $\|\| : V \longrightarrow \mathbb{R}_0^+$.
2 $\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \cos \Phi$.
3 $\langle \vec{a}, \vec{b} \rangle = 0 \Leftrightarrow \vec{a} \perp \vec{b}$

Vector- / Cross-Product

Definition

$$[,]: V \times V \to V; V \cong \mathbb{R}^{3}$$
$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} := \begin{vmatrix} e_{1} & e_{2} & e_{3} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{vmatrix}; \{e_{1}, e_{2}, e_{3}\} \text{ basis of } \mathbb{R}^{3}$$

 $[,]: V \times V \rightarrow V$ is a bilinear, anti-symmetric vector

Volume Product

Definition

 $\left\langle \left[\vec{a}, \vec{b} \right], \vec{c} \right\rangle$ is the oriented volume spanned by $\vec{a}, \vec{b}, \vec{c}$.

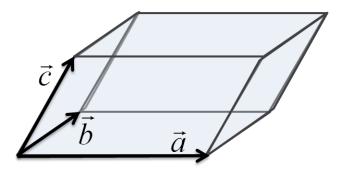


Figure: volume defined by vectors \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c}

Properties

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = 0 \Leftrightarrow \vec{a}, \vec{b} \text{ are linearly dependent.}$$

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} \text{ is orthogonal to } \vec{a} \text{ and } \vec{b}; \left\{ \vec{a}, \vec{b}, \left[\vec{a}, \vec{b} \right] \right\} \text{ is a right hand system.}$$

$$\begin{bmatrix} \left[\vec{a}, \vec{b} \right] \right\| = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \sin \Phi = \sqrt{\left(\|\vec{a}\|^2 \cdot \|\vec{b}\|^2 - \left\langle \vec{a}, \vec{b} \right\rangle^2 \right)}.$$

$$\begin{bmatrix} \left\langle \vec{c}, \left[\vec{a}, \vec{b} \right] \right\rangle = \det \left(\vec{c}, \vec{a}, \vec{b} \right) = \left| \vec{c}, \vec{a}, \vec{b} \right|.$$

$$\begin{bmatrix} \left[\vec{a}, \vec{b} \right], \left[\vec{c}, \vec{d} \right] \right\rangle = \langle \vec{a}, \vec{c} \rangle \cdot \left\langle \vec{b}, \vec{d} \right\rangle - \left\langle \vec{a}, \vec{d} \right\rangle \cdot \left\langle \vec{b}, \vec{c} \right\rangle.$$

$$\begin{bmatrix} \left[\vec{a}, \vec{b} \right], \left[\vec{c}, \vec{d} \right] \right] = \langle \vec{a}, \vec{c} \rangle \cdot \vec{b} - \left\langle \vec{a}, \vec{b} \right\rangle \cdot \vec{c}.$$

$$\begin{bmatrix} \left[\left[\vec{a}, \vec{b} \right], \left[\vec{c}, \vec{d} \right] \right] = \det \left(\vec{a}, \vec{b}, \vec{d} \right) \cdot \vec{c} - \det \left(\vec{a}, \vec{b}, \vec{c} \right) \cdot \vec{d}.$$

Calculations with 3-dimensional Column-Vectors

Addition $\vec{a} + \vec{b} := \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$ Scalar Multiplication $\lambda \cdot \vec{a} = \begin{pmatrix} \lambda \cdot a_1 \\ \lambda \cdot a_2 \\ \lambda \cdot a_3 \end{pmatrix}$ Scalar Product $\langle \vec{a}, \vec{b} \rangle = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

Calculations with 3-dimensional Column-Vectors

Vector Product

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
Volume Product

$$\begin{pmatrix} \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}, \vec{c} \end{pmatrix} = \det \begin{pmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

Applications - Hesse form

Definition

$$P_1, P_2, P_3: \text{ Points on a plane} \\ HF := \frac{[(P_2 - P_1), (P_3 - P_1)]}{\|[(P_2 - P_1), (P_3 - P_1)]\|} \rightarrow \langle (\vec{r} - P_1), HF \rangle = 0$$

Distances

- $\langle (\vec{a} P_1), HF \rangle$ is the distance of a point to the plane.
- Distance of point P to straight line $r = \vec{a} + t \cdot \vec{b}$: $\frac{\|[(\vec{p} \vec{a}), \vec{b}]\|}{\|\vec{b}\|}$

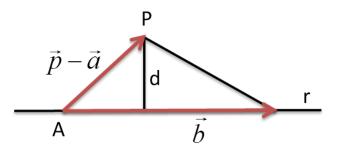


Figure: Distance point-to-line: $\frac{1}{2}d\|\vec{b}\| = \frac{1}{2}\|[\vec{p} - \vec{a}, \vec{b}]\|$

• The non-intersecting straight lines $\vec{r} = \vec{a_1} + t \cdot \vec{b_1}$ and $\vec{s} = \vec{a_2} + \tau \cdot \vec{b_2}$ have the distance: $d = \frac{\langle (\vec{a_1} - \vec{a_2}), [\vec{b_1}, \vec{b_2}] \rangle}{\|[\vec{b_1}, \vec{b_2}]\|}$, if det $(\vec{a_1} - \vec{a_2}, \vec{b_1}, \vec{b_2}) \neq 0$

Distances

Locations of the points of shortest distance $\tau_{0} = \frac{\det((\vec{a_{1}} - \vec{a_{2}}), \vec{b_{1}}, [\vec{b_{1}}, \vec{b_{2}}])}{\langle [\vec{b_{1}}, \vec{b_{2}}], [\vec{b_{1}}, \vec{b_{2}}] \rangle}$ $t_{0} = \frac{\det((\vec{a_{2}} - \vec{a_{1}}), \vec{b_{2}}, [\vec{b_{1}}, \vec{b_{2}}])}{\langle [\vec{b_{1}}, \vec{b_{2}}], [\vec{b_{1}}, \vec{b_{2}}] \rangle}$