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Spline Curves

Problem: In the previous chapter, we have seen that
interpolating polynomials, especially those of high
degree, tend to produce strong wriggling e�ects.

Solution: Use curves consisting of several low-degree segments.

Condition: The polynomial segments have to �t together
�smoothly� at the transitions (nodes).
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Spline Curves

De�nition

C k -continuity

A function f (t) is C k -continuous, if the function and its �rst k
derivatives are continuous.

C k [t0, tn] is the class of C k -continuous functions on the
interval [t0, tn].

De�nition

Spline

Let τ = {t0, . . . , tn} a node vector with real-valued nodes
ti < ti+1.

A function S is called Spline of degree k (of order k + 1) if:
1 S is a polynomial of degree k in every partial interval [ti , ti+1]
2 S is C k−1-continuous on [t0, tn].
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Spline Curves

Remarks

1 The spline S is called interpolating spline, if S(ti ) = pi for a
given set of interpolation points pi (ordinates).

2 In general, the interpolating spline is not uniquely de�ned.
Therefore, additional boundary conditions are required for the
remaining k − 1 degrees of freedom.

Natural Splines: cubic splines (k = 3) with natural boundary
conditions S ′′(t0) = 0 and S ′′(tn) = 0

Periodic Splines: identify nodes t0 and tn with each other, i.e.

S(t0) = S(tn); S ′(t0) = S ′(tn); S ′′(t0) = S ′′(tn)

Algorithmic Geometry WS 2017/2018 5



Spline Curves

Cubic Splines

Instead of specifying properties of the interpolating function (e.g.
maximal degree), we can also specify the shape (e.g. �smooth�).
Requirement: ∫ tn

t0

∥∥g ′′(t)
∥∥2 → minimal (1)

with additional conditions:

g(tj) = pj (j = 0, . . . , n), g ′(t0) = p′0 and g ′(tn) = p′n (2)

Algorithmic Geometry WS 2017/2018 6



Spline Curves

Theorem

Minimum-Norm Property

Among all functions g ∈ C 2[t0, tn] which satisfy g(ti ) = yi , the
integral

∫ tn
t0
‖g ′′(x)‖2 for the interpolating cubic spline function S

has the smallest value.

Proof: . . .
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Spline Curves

Interpolation with Natural Cubic Splines

Coe�cients ai , bi , ci , di of a natural cubic spline:

S(t) = Si (t) = ai + bi (t − ti ) + ci (t − ti )
2 + di (t − ti )

3

for t ∈ [ti , ti+1], i = 0, . . . , n − 1.

→ Conditions for polynomials Si :

Si (ti ) = pi , i = 0, . . . , n − 1,

Si (ti+1) = pi+1, i = 0, . . . , n − 1,

S ′i (ti ) = S ′i−1(ti ), i = 1, . . . , n − 1,

S ′′i (ti ) = S ′′i−1(ti ), i = 1, . . . , n − 1.
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Spline Curves

For our coe�cients, this implies that:

ai = pi , i = 0, . . . , n − 1 and Sn−1(tn) = pn,

ai = ai−1 + bi−1(ti − ti−1) + ci−1(ti − ti−1)2

+ di−1(ti − ti−1)3, i = 1, . . . , n − 1

bi = bi−1 + 2ci−1(ti − ti−1) + 3di−1(ti − ti−1)2, i = 1, . . . , n − 1

2ci = 2ci−1 + 6di−1(ti − ti−1), i = 1, . . . , n − 1
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Spline Curves

We de�ne ∆i := ti+1 − ti and, after some transformations, get:

ci−1(∆i−1) + ci (2(∆i−1 + ∆i )) + ci+1(∆i )

=
3

∆i
(pi+1 − pi )−

3

∆i−1
(pi − pi−1) i = 1, . . . , n − 1 (3)

with cn := 0

di =
1

3∆i
(ci+1 − ci ) i = 0, . . . , n − 1 (4)

bi =
1

∆i
(pi+1 − pi )−

∆i

3
(ci+1 + 2ci ) i = 0, . . . , n − 1 (5)
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Spline Curves

ai = pi , i = 0, . . . , n − 1, i.e. the ai are already known.
→ We have to solve a linear system of n − 1 equations with n + 1
unknowns (ci , i = 0, . . . , n).

Natural Cubic Splines

S ′′(t0) = 0 and S ′′(tn) = 0
→ c0 = cn = 0

Algorithmic Geometry WS 2017/2018 11



Spline Curves

We have: n + 1 supporting values (nodes) ti with
t0 < t1 < · · · < tn and
function values p0, . . . , pn.

We want: natural cubic spline S of the form

S(t) = Si (t) = ai +bi (t− ti ) +ci (t− ti )
2 +di (t− ti )

3

for t ∈ [ti , ti+1] and i = 0, . . . , n − 1.

The coe�cients ai , bi , ci , di are found using (3)-(5) and

ai = pi i = 0, . . . , n − 1

c0 = cn = 0
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Spline Curves

The equations (3) can be written in matrix form Ac = r :

A :=


2(∆0 + ∆1) ∆1 0 . .

∆1 2(∆1 + ∆2) ∆2 . 0
0 ∆2 . . ∆n−2
. . 0 ∆n−2 2(∆n−2 + ∆n−1)



c :=

 c1
...

cn−1

 r := 3


p2−p1

∆1
− p1−p0

∆0
...

pn−pn−1

∆n−1
− pn−1−pn−2

∆n−2
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Spline Curves

The matrix A is tridiagonal, symmetric, diagonally dominant,
positive-de�nite, and consists of only positive elements. This
implies:

A is regular and the linear system of equations has a unique
solution.

For solving the system, the direkt LU-decomposition for
tridiagonal matrices should be used, because the algorithm has
the complexity of only O(n).
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Spline Curves

Interpolation with Periodic Cubic Splines

If we identify t0 with tn, i.e. p0 = pn, we get a closed interpolating
curve with a C 2-continuous transition at t0.
→ In the algorithm for natural cubic splines, we only have to
change the matrix A of system (3):

A :=


2(∆0 + ∆1) ∆1 . 0 ∆0

∆1 2(∆1 + ∆2) ∆2 . 0
0 . . . ∆n−1

∆0 0 . ∆n−1 2(∆n−1 + ∆0)
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Spline Curves

This matrix is cyclic-tridiagonal, symmetric, diagonally dominant,
positive-de�nite and consists of only positive elements. This
implies:

A is well-conditioned

The system can also be solved in O(n).

In comparison to the system (3) for natural cubic splines, the
matrix is larger by one row and one column, because we have
n instead of n − 1 transitions.

Due to the cyclic band structure of the matrix, we have
additional non-zero elements in the upper right and lower left
corners.
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Spline Curves

Polynomial Averaging Splines

We have: Values f (ti ) = fi of a function f ∈ C [a, b] with
errors (e.g. measurement errors)
n + 1 nodes ti with a = t0 < t1 < · · · < tn = b

The distribution of the fi makes a useful approximation with
interpolating splines impossible.

We need an �error-compensating replacement function�, which
runs �smoothly� along the points (ti , fi ).

Consider an interpolating spline S through a new set of values gi .
The gi have to satisfy that the di�erences fi − gi are positively
proportional to the jumps γi of the third derivative of S at ti .
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Spline Curves

De�nition

Polynomial Averaging Spline
A polynomial averaging spline of degree three with n + 1 nodes ti
and ��awed� values fi is a function S : [a, b]→ R with the
following properties:

S ∈ C 2[a, b] (6)

S is a polynomial of degree three in each sub-interval (7)

S(ti ) = gi for i = 0, . . . , n (8)

wi · (fi − gi ) = γi for i = 0, . . . , n with weights wi > 0 (9)

γ0 = S ′′′0 (t0) γn = −S ′′′n−1(tn)

γi = S ′′′i (ti )− S ′′′i−1(ti ) i = 1, . . . , n − 1
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Spline Curves

Choosing large values for the weights wi will result in a curve that
is very close to the data values fi , while smaller wi will result in a
�atter curve.

Algorithmic Geometry WS 2017/2018 19



Spline Curves

The system of equations used by an averaging spline algorithm can
be constructed by combining the conditions for interpolating splines

with the speci�c conditions for averaging splines (9).
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Spline Curves

Parametric Splines

Modelling of plane curves or space curves:
→ vector-valued or parametric splines

De�nition

Parametric Spline
Consider an interval [a, b] ⊂ R and
∆ := (t0, . . . , tn), a = t0 < t1 < · · · < tn = b. The mapping
X : [a, b]→ R3 is called parametric spline of degree k (order
k + 1), if its component functions xi , i = 1, 2, 3 are of degree k :

xi ∈ C k−1[a, b] (i = 1, 2, 3)

short: X ∈ C k−1[a, b]
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Spline Curves

De�nition

C k -Transition
Two parametric curves X : [t0, t1]→ R3 and Y : [s0, s1]→ R3 with
X ∈ Cm[t0, t1] and Y ∈ Cn[s0, s1] have a C k -transition at their
shared point X (t1) = Y (s0) if the following holds:

d r

dtr
X (t1) =

d r

dsr
Y (s0)

for all r with 1 ≤ r ≤ k .
Discontinuities are also called C−1-transitions.
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Spline Curves

Interpolation with Parametric Cubic Splines

We have: interpolation points pi := (xi , yi , zi ), i = 0, . . . , n.

We want: interpolating parametric cubic spline S(t).

Step 1: Parametrization
Specify parameter values (nodes) ti , i = 0, . . . , n for
the interpolation points: S(ti ) = pi .

Step 2: Boundary Conditions
Specify boundary conditions (natural or periodic).
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Spline Curves

Step 3: Spline algorithm
Calculate the spline components Sx ,Sy , Sz such that
Sx(ti ) = xi , Sy (ti ) = yi ,Sz(ti ) = zi , i = 0, . . . , n
using the appropriate spline algorithm:

Sx(t) = Sxi (t) = axi + bxi (t − ti ) + cxi (t − ti )
2 + dxi (t − ti )

3

Sy (t) = Syi (t) = ayi + byi (t − ti ) + cyi (t − ti )
2 + dyi (t − ti )

3

Sz(t) = Szi (t) = azi + bzi (t − ti ) + czi (t − ti )
2 + dzi (t − ti )

3

t ∈ [ti , ti+1], i = 0, . . . , n − 1.
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Spline Curves

For closed curves which are �smooth� everywhere, it makes
sense to use periodic splines.

If a curve has one or more �cusps� (i.e. C 0-transitions), we can
use natural splines with the cusps as start- and endpoints.
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Spline Curves

Parametrizations

The shape, and therefore also the quality, of a curve (or surface)
depends strongly on the parametrization.

(a) and (b) are two di�erent parametrizations for the same set of

interpolation points.
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Spline Curves

We can demonstrate the impact of the choice of parameters using a
kinematic interpretation:

Interpret the curve parameter t as a time parameter.

It represents the amount of time that a point S would need to
traverse the curve.

For the following parametrizations, we are interpolating a set of
points using a curve:

parameter interval [a, b] and

n + 1 points to interpolate
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Spline Curves

Equidistant Parametrization

For each pair of successive interpolations points (pi , pi+1), we have
the same amount of time for traversal:

∆t =
b − a

n
; ti = a + i ·∆t; i = 0, . . . , n

If the distances between the points vary strongly, then a point S
traverses the curve with varying speed. That is, if a large distance
is followed by a small distance, the speed has to be reduced greatly.
This can result in �wiggling� of the interpolation curve.
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Spline Curves

Chordal Parametrization

Idea: Adapt the parametrization to the �structure� of the point set.
This is achieved by selecting the parameter intervals proportionally
to the distances of neighboring interpolation points. We control the
overall length using a normalization factor s (example: s is the
overall length of the polygon formed by the pi ).

∆ti = ti+1 − ti :=
‖pi+1 − pi‖

s
.
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Spline Curves

Centripetal Parametrization

Idea: The parametrization should minimize the centripetal
acceleration (normal acceleration) [Lee 1989]. The normal forces
along an arc are proportional to the angular velocity.

∆ti :=

√
‖pi+1 − pi‖

s

These parametrizations are not a�ne
invariant because length measurements
are used. For example, the expression
to the right is a�ne invariant only if the
three points lie in a line.

‖pi+1 − pi‖
‖pi+2 − pi+1‖
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Spline Curves

Foley-Parametrization

Idea: The parametrization should take into account distances and
angle di�erences at the interpolation points [Foley 1989].

∆ti := di

(
1 +

2 · φ̃i · di−1
3(di−1 + di )

+
2 · φ̃i+1 · di+1

3(di + di+1)

)

with

φ̃i := min(π − φi ,
π

2
).
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Spline Curves

Nielson-Metric
The distance function d used with the Foley-parametrization can be
either the euclidean metric or the Nielson-metric, which is
a�ne-invariant:

∥∥∥∥(xy
)∥∥∥∥2

N

:= (x , y)·
( σy

∆
−σxy

∆−σxy

∆
σx
∆

)
·
(
x
y

) x :=
1

n

n∑
i=1

xi ;

y :=
1

n

n∑
i=1

yi ;

with σx :=
1

n

n∑
i=1

(xi − x)2; σy :=
1

n

n∑
i=1

(yi − y)2;

σxy :=
1

n

n∑
i=1

(xi − x) · (yi − y); ∆ := σxσy − σ2
xy
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Spline Curves

The Nielson-metric works as follows:

scale the point set in a way that the variance is equal in all
directions

distances are obtained from the scaled arrangement of the
points

The metric allows for independence from coordinate systems and
scaling.
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Example

equidistant parametrization

chordal parametrization

centripetal parametrization

Foley-parametrization with
Nielson metric
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Spline Curves

Parameter Transformations

The shape of a curve is strongly in�uenced by the parametrization
of the interpolation points. It is, however, possible to modify the
parametrization without altering the shape of the curve.

De�nition

Parameter Transformation, Reparametrization
Consider a parametric curve X (t) and a bijective, continuous
function ϕ(t). Then the curve Y (t) : X (ϕ(t)) can be obtained
from X using a parameter transformation.
If both ϕ and ϕ−1 are continuously di�erentiable, ϕ is called a C 1

parameter transformation.
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Spline Curves

Example

The length of a curve segment is

L(t0, t1) =

∫ t1

t0

∥∥∥Ẋ (t)
∥∥∥ dt, Ẋ =

dX

dt

Using this, we can, for example, re-parametrize the curve such that∥∥∥Ẋ (t)
∥∥∥ = 1 and t is the arc length of the curve.
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Spline Curves

The following properties do not depend on the parametrization of
the curve:

Curvature (�Deviation with respect to the tangent�) and
Torsion (�Deviation from planar shape�)

De�nition

κ(t) =

∥∥∥Ẋ (t)× Ẍ (t)
∥∥∥∥∥∥Ẋ (t)

∥∥∥3 (curvature)

τ(t) =
det
(
Ẋ (t), Ẍ (t),

...
X (t)

)
∥∥∥Ẋ (t)× Ẍ (t)

∥∥∥2 (torsion)

The radius of the osculating circle (German: Schmiegekreis) of
X (t) is r(t) = 1

κ(t) .
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Example
Proof that the curvature of Y (t) = X (ϕ(t)) does not depend on ϕ:

Ẏ (t) =
dY

dt
= X ′(ϕ(t))ϕ′(t) =: X ′ϕ′

Ÿ (t) =
dẎ

dt
= X ′′(ϕ(t))(ϕ′(t))2 + X ′(ϕ(t))ϕ′′(t) =: X ′′ϕ′2 + X ′ϕ′′

κY (t) =

∥∥(X ′ϕ′)× (X ′′ϕ′2 + X ′ϕ′′)
∥∥

‖X ′ϕ′‖3

=
ϕ′3 ‖X ′ × X ′′‖+ ϕ′ϕ′′

0︷ ︸︸ ︷∥∥X ′ × X ′
∥∥

ϕ′3 ‖X ′‖3

=
‖X ′ × X ′′‖
‖X ′‖3

= κX (ϕ(t))
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Spline Curves

Remark

Instead of C k -continuity, continuity of geometric properties (e.g.
tangent, curvature, torsion,...) may be required.

→ As a result, we have more degrees of freedom for modelling.
→ geometric splines, G-splines

→ see lectures on

Geometric Modelling
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